Réarrangements chromosomiques dans les génomes de mammifères : caractérisation des points de cassure. (Chromosomal rearrangements in mammalian genomes : characterising the breakpoints)

Les rearrangements chromosomiques sont des mutations qui modifient la structure et l'organisation des genomes. Ils sont ici etudies dans le cadre de l'evolution des genomes de mammiferes. L'objectif de ces travaux est de caracteriser les regions du genome qui ont subi de tels evenements; elles sont appelees des points de cassure. Dans un premier temps, nous avons developpe une methode permettant d'identifier precisement ces regions sur un genome par comparaison avec un genome d'espece differente. Nous montrons qu'elle ameliore nettement la resolution par rapport aux methodes existantes. Cela permet, dans un deuxieme temps, d'analyser le contenu des sequences de points de cassure et leur repartition le long du genome. Plusieurs caracteristiques de sequences ont ainsi ete identifiees dans les points de cassure chez l'homme, comme la perte de similarite avec les genomes compares et la presence de duplications et d'elements transposables. Enfin, nous montrons que les points de cassure ne sont pas repartis uniformement le long du genome, mais leur localisation serait fortement influencee par l'organisation des genes et la structuration du genome en isochores.

[1]  David Sankoff,et al.  The Signal in the Genomes , 2006, PLoS Comput. Biol..

[2]  J. Rogers,et al.  A High-Resolution Map of Synteny Disruptions in Gibbon and Human Genomes , 2006, PLoS genetics.

[3]  M. Seldin,et al.  Human/mouse homology relationships. , 1996, Genomics.

[4]  G. Klein,et al.  Segmental duplications and evolutionary plasticity at tumor chromosome break-prone regions. , 2008, Genome research.

[5]  Nicholas L. Bray,et al.  AVID: A global alignment program. , 2003, Genome research.

[6]  A. Sturtevant,et al.  A Case of Rearrangement of Genes in Drosophila. , 1921, Proceedings of the National Academy of Sciences of the United States of America.

[7]  D. Sankoff,et al.  Synteny conservation and chromosome rearrangements during mammalian evolution. , 1997, Genetics.

[8]  C. Pál,et al.  The evolutionary dynamics of eukaryotic gene order , 2004, Nature Reviews Genetics.

[9]  G. Coop,et al.  High-Resolution Mapping of Crossovers Reveals Extensive Variation in Fine-Scale Recombination Patterns Among Humans , 2008, Science.

[10]  S. Scherer,et al.  Enrichment of segmental duplications in regions of breaks of synteny between the human and mouse genomes suggest their involvement in evolutionary rearrangements. , 2003, Human molecular genetics.

[11]  Peer Bork,et al.  Comparative Genome and Proteome Analysis of Anopheles gambiae and Drosophila melanogaster , 2002, Science.

[12]  T. Glover,et al.  Common fragile sites as targets for chromosome rearrangements. , 2006, DNA repair.

[13]  G Bernardi,et al.  The distribution of interspersed repeats is nonuniform and conserved in the mouse and human genomes. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Fengtang Yang,et al.  Comparative cytogenetics of human chromosome 3q21.3 reveals a hot spot for ectopic recombination in hominoid evolution. , 2005, Genomics.

[15]  Bernard B. Suh,et al.  Reconstructing contiguous regions of an ancestral genome. , 2006, Genome research.

[16]  David Sankoff,et al.  Chromosome rearrangements in evolution: From gene order to genome sequence and back , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[17]  P. Donnelly,et al.  The Fine-Scale Structure of Recombination Rate Variation in the Human Genome , 2004, Science.

[18]  Laurence D. Hurst,et al.  The evolution of isochores , 2001, Nature Reviews Genetics.

[19]  J. Aten,et al.  Dynamics of DNA Double-Strand Breaks Revealed by Clustering of Damaged Chromosome Domains , 2004, Science.

[20]  Frédéric Boyer,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2005 .

[21]  D. Lipman,et al.  A genomic perspective on protein families. , 1997, Science.

[22]  David Sankoff,et al.  Algorithms for the Extraction of Synteny Blocks from Comparative Maps , 2007, WABI.

[23]  Nick Gilbert,et al.  The role of chromatin structure in regulating the expression of clustered genes , 2005, Nature Reviews Genetics.

[24]  L. Froenicke,et al.  Origins of primate chromosomes – as delineated by Zoo-FISH and alignments of human and mouse draft genome sequences , 2004, Cytogenetic and Genome Research.

[25]  Joshua M. Korn,et al.  Mapping and sequencing of structural variation from eight human genomes , 2008, Nature.

[26]  Jose Castresana,et al.  Is mammalian chromosomal evolution driven by regions of genome fragility? , 2006, Genome Biology.

[27]  A. Pombo,et al.  Transcription factories: quantitative studies of nanostructures in the mammalian nucleus , 2004, Chromosome Research.

[28]  L H. Rieseberg,et al.  Chromosomal rearrangements and speciation. , 2001, Trends in ecology & evolution.

[29]  Matthias Platzer,et al.  Breakpoint analysis of the pericentric inversion distinguishing human chromosome 4 from the homologous chromosome in the chimpanzee (Pan troglodytes) , 2005, Human mutation.

[30]  S. Ohno,et al.  Ancient Linkage Groups and Frozen Accidents , 1973, Nature.

[31]  Jack W. Szostak,et al.  The double-strand-break repair model for recombination , 1983, Cell.

[32]  C. Gissi,et al.  GeneSyn: a tool for detecting conserved gene order across genomes. , 2004, Bioinformatics.

[33]  A. Ruiz-Herrera,et al.  Evolutionary breakpoints are co-localized with fragile sites and intrachromosomal telomeric sequences in primates , 2004, Cytogenetic and Genome Research.

[34]  Adam Eyre-Walker,et al.  Recombination and mammalian genome evolution , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[35]  Alain Arneodo,et al.  Human gene organization driven by the coordination of replication and transcription. , 2007, Genome research.

[36]  P. Verschure,et al.  Chromosome organization and gene control: It is difficult to see the picture when you are inside the frame , 2006, Journal of cellular biochemistry.

[37]  Nick Gilbert,et al.  Chromatin Architecture of the Human Genome Gene-Rich Domains Are Enriched in Open Chromatin Fibers , 2004, Cell.

[38]  D. Haussler,et al.  Hotspots of mammalian chromosomal evolution , 2004, Genome Biology.

[39]  E. Eichler,et al.  Segmental duplications and copy-number variation in the human genome. , 2005, American journal of human genetics.

[40]  Penny A. Jeggo,et al.  The role of double-strand break repair — insights from human genetics , 2006, Nature Reviews Genetics.

[41]  Michael Krawczak,et al.  Translocation and gross deletion breakpoints in human inherited disease and cancer II: Potential involvement of repetitive sequence elements in secondary structure formation between DNA ends , 2003, Human mutation.

[42]  Elisabeth R. M. Tillier,et al.  Positional Homology in Bacterial Genomes , 2006, Evolutionary bioinformatics online.

[43]  Richard A. Notebaart,et al.  Correlation between sequence conservation and the genomic context after gene duplication , 2005, Nucleic acids research.

[44]  Marie-France Sagot,et al.  Precise detection of rearrangement breakpoints in mammalian chromosomes , 2008, BMC Bioinformatics.

[45]  Pierre Peterlongo Filtrage de séquences d'ADN pour la recherche de longues répétitions multiples. (DNA sequence filtration for the problem of finding long multiple repetitions) , 2006 .

[46]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[47]  H. Hameister,et al.  Isochores and replication time zones: a perfect match , 2007, Cytogenetic and Genome Research.

[48]  Horst Hameister,et al.  Segmental duplication associated with the human-specific inversion of chromosome 18: a further example of the impact of segmental duplications on karyotype and genome evolution in primates , 2004, Human Genetics.

[49]  J. Nadeau,et al.  Lengths of chromosomal segments conserved since divergence of man and mouse. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Inna Dubchak,et al.  Glocal alignment: finding rearrangements during alignment , 2003, ISMB.

[51]  Philip M. Kim,et al.  Paired-End Mapping Reveals Extensive Structural Variation in the Human Genome , 2007, Science.

[52]  Molly Przeworski,et al.  Fine-scale recombination patterns differ between chimpanzees and humans , 2005, Nature Genetics.

[53]  J. Piálek,et al.  Raciation and speciation in house mice from the Alps: the role of chromosomes , 2001, Molecular ecology.

[54]  J R Savage,et al.  A brief survey of aberration origin theories. , 1998, Mutation research.

[55]  David Sankoff,et al.  Rearrangement of Noisy Genomes , 2006, International Conference on Computational Science.

[56]  T. J. Robinson,et al.  Chromosomal instability in Afrotheria: fragile sites, evolutionary breakpoints and phylogenetic inference from genome sequence assemblies , 2007, BMC Evolutionary Biology.

[57]  G Bernardi,et al.  Isochores and the evolutionary genomics of vertebrates. , 2000, Gene.

[58]  Francis Galibert,et al.  AutoGRAPH: an interactive web server for automating and visualizing comparative genome maps , 2007, Bioinform..

[59]  Pavel A Pevzner,et al.  The Fragile Breakage versus Random Breakage Models of Chromosome Evolution , 2006, PLoS Comput. Biol..

[60]  P. Pevzner,et al.  Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[61]  T. Graves,et al.  The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes , 2003, Nature.

[62]  Phil Trinh,et al.  Chromosomal Breakpoint Reuse in Genome Sequence Rearrangement , 2005, J. Comput. Biol..

[63]  G. Bernardi,et al.  Correlations between isochores and chromosomal bands in the human genome. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[64]  N. Takahata,et al.  The amelogenin loci span an ancient pseudoautosomal boundary in diverse mammalian species , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[65]  E. Eichler,et al.  Structure of chromosomal duplicons and their role in mediating human genomic disorders. , 2000, Genome research.

[66]  Giorgio Bernardi,et al.  An isochore map of human chromosomes. , 2006, Genome research.

[67]  Shreedhar Natarajan,et al.  A 1463 gene cattle-human comparative map with anchor points defined by human genome sequence coordinates. , 2004, Genome research.

[68]  Christus,et al.  A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins , 2022 .

[69]  R. Page,et al.  From gene to organismal phylogeny: reconciled trees and the gene tree/species tree problem. , 1997, Molecular phylogenetics and evolution.

[70]  A. Ruiz-Herrera,et al.  Fragile Sites in Human and Macaca Fascicularis Chromosomes are Breakpoints in Chromosome Evolution , 2004, Chromosome Research.

[71]  D. Page,et al.  Four evolutionary strata on the human X chromosome. , 1999, Science.

[72]  Amit U. Sinha,et al.  Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms , 2007, BMC Bioinformatics.

[73]  Marie-France Sagot,et al.  Footprints of Inversions at Present and Past Pseudoautosomal Boundaries in Human Sex Chromosomes , 2009, Genome biology and evolution.

[74]  Bin Ma,et al.  PatternHunter: faster and more sensitive homology search , 2002, Bioinform..

[75]  Hélène Hayes,et al.  High-resolution comparative mapping among man, cattle and mouse suggests a role for repeat sequences in mammalian genome evolution , 2006, BMC Genomics.

[76]  P. Stankiewicz,et al.  Genome architecture, rearrangements and genomic disorders. , 2002, Trends in genetics : TIG.

[77]  Pavel A. Pevzner,et al.  Are There Rearrangement Hotspots in the Human Genome? , 2007, PLoS Comput. Biol..

[78]  Michael Brudno,et al.  Fast and sensitive multiple alignment of large genomic sequences , 2003, BMC Bioinformatics.

[79]  S. Gangloff,et al.  Replication fork pausing and recombination or "gimme a break". , 2000, Genes & development.

[80]  B. Trask,et al.  Segmental duplications: organization and impact within the current human genome project assembly. , 2001, Genome research.

[81]  Steven Salzberg,et al.  DAGchainer: a tool for mining segmental genome duplications and synteny , 2004, Bioinform..

[82]  J. Sawyer,et al.  The striking resemblance of high-resolution G-banded chromosomes of man and chimpanzee. , 1980, Science.

[83]  M. Ashburner,et al.  Comparative genome organization of vertebrates. The First International Workshop on Comparative Genome Organization. , 1996, Mammalian genome : official journal of the International Mammalian Genome Society.

[84]  P. Pevzner,et al.  Reconstructing the genomic architecture of ancestral mammals: lessons from human, mouse, and rat genomes. , 2004, Genome research.

[85]  L. Duret,et al.  GC-content evolution in mammalian genomes: the biased gene conversion hypothesis. , 2001, Genetics.

[86]  A. Bird DNA methylation and the frequency of CpG in animal DNA. , 1980, Nucleic acids research.

[87]  W. Goedecke,et al.  Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. , 2000, Mutagenesis.

[88]  Webb Miller,et al.  Evolution and functional classification of vertebrate gene deserts. , 2005, Genome research.

[89]  E. Eichler,et al.  Primate segmental duplications: crucibles of evolution, diversity and disease , 2006, Nature Reviews Genetics.

[90]  G Bernardi,et al.  An approach to the organization of eukaryotic genomes at a macromolecular level. , 1976, Journal of molecular biology.

[91]  E. Eichler,et al.  Chromosome evolution in eukaryotes: a multi-kingdom perspective. , 2005, Trends in genetics : TIG.

[92]  P. Pevzner,et al.  Dynamics of Mammalian Chromosome Evolution Inferred from Multispecies Comparative Maps , 2005, Science.

[93]  C. A. Machado,et al.  Inferring the history of speciation from multilocus DNA sequence data: the case of Drosophila pseudoobscura and close relatives. , 2002, Molecular biology and evolution.

[94]  P. Stankiewicz,et al.  The evolutionary chromosome translocation 4;19 in Gorilla gorilla is associated with microduplication of the chromosome fragment syntenic to sequences surrounding the human proximal CMT1A-REP. , 2001, Genome research.

[95]  F. Blattner,et al.  Mauve: multiple alignment of conserved genomic sequence with rearrangements. , 2004, Genome research.

[96]  Ali Bashir,et al.  Evaluation of Paired-End Sequencing Strategies for Detection of Genome Rearrangements in Cancer , 2008, PLoS Comput. Biol..

[97]  S. Cannon,et al.  DiagHunter and GenoPix2D: programs for genomic comparisons, large-scale homology discovery and visualization , 2003, Genome Biology.

[98]  Ivan Ovcharenko,et al.  Comparative analysis of chicken chromosome 28 provides new clues to the evolutionary fragility of gene-rich vertebrate regions. , 2007, Genome research.

[99]  J. Raes,et al.  The automatic detection of homologous regions (ADHoRe) and its application to microcolinearity between Arabidopsis and rice. , 2002, Genome research.

[100]  T. Shaikh,et al.  The constitutional t(17;22): another translocation mediated by palindromic AT-rich repeats. , 2003, American journal of human genetics.

[101]  C. ozouF-cosTaz,et al.  LINE-1 amplification accompanies explosive genome repatterning in rodents , 2005, Chromosome Research.

[102]  G Bernardi,et al.  An analysis of eukaryotic genomes by density gradient centrifugation. , 1976, Journal of molecular biology.

[103]  Ana Pombo,et al.  Chromosome organization: new facts, new models. , 2007, Trends in cell biology.

[104]  R. Richards,et al.  Fragile sites and minisatellite repeat instability. , 2000, Molecular genetics and metabolism.

[105]  Ron Y. Pinter,et al.  An Integrative Method for Accurate Comparative Genome Mapping , 2006, PLoS Comput. Biol..

[106]  L. Duret,et al.  The covariation between TpA deficiency, CpG deficiency, and G+C content of human isochores is due to a mathematical artifact. , 2000, Molecular biology and evolution.

[107]  David Sankoff,et al.  The lengths of undiscovered conserved segments in comparative maps , 1998, Mammalian Genome.

[108]  D. Cooper,et al.  Molecular characterisation of the pericentric inversion that distinguishes human chromosome 5 from the homologous chimpanzee chromosome , 2005, Human Genetics.

[109]  L. Duret,et al.  Evolutionary origin and maintenance of coexpressed gene clusters in mammals. , 2006, Molecular biology and evolution.

[110]  B. Dutrillaux,et al.  Premature condensation induces breaks at the interface of early and late replicating chromosome bands bearing common fragile sites. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[111]  Phil Trinh,et al.  Genomic features in the breakpoint regions between syntenic blocks , 2004, ISMB/ECCB.

[112]  C. Chabot,et al.  Preferential accessibility to specific genomic loci for the repair of double-strand breaks in human cells. , 2004, Nucleic acids research.

[113]  Sridhar Hannenhalli,et al.  Recurring genomic breaks in independent lineages support genomic fragility , 2006, BMC Evolutionary Biology.

[114]  P. Baldi,et al.  LineUp: statistical detection of chromosomal homology with application to plant comparative genomics. , 2003, Genome research.

[115]  Alair Pereira do Lago,et al.  Alignment with non-overlapping inversions in O(n3logn)-time , 2005, Electron. Notes Discret. Math..

[116]  G Bernardi,et al.  The distribution of genes in the human genome. , 1991, Gene.

[117]  P. Pevzner,et al.  Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. , 2003, Genome research.

[118]  E. Eichler,et al.  Structural Dynamics of Eukaryotic Chromosome Evolution , 2003, Science.

[119]  L. Duret,et al.  Statistical analysis of vertebrate sequences reveals that long genes are scarce in GC-rich isochores , 1995, Journal of Molecular Evolution.

[120]  D. Haussler,et al.  Human-mouse alignments with BLASTZ. , 2003, Genome research.

[121]  D. Cooper,et al.  Molecular mechanisms of chromosomal rearrangement during primate evolution , 2008, Chromosome Research.

[122]  Alair Pereira do Lago,et al.  Lossless filter for multiple repetitions with Hamming distance , 2008, J. Discrete Algorithms.

[123]  Michael Krawczak,et al.  Translocation and gross deletion breakpoints in human inherited disease and cancer I: Nucleotide composition and recombination‐associated motifs , 2003, Human mutation.

[124]  Caleb Webber,et al.  Hotspots of mutation and breakage in dog and human chromosomes. , 2005, Genome research.

[125]  A Ando,et al.  A boundary of long-range G + C% mosaic domains in the human MHC locus: pseudoautosomal boundary-like sequence exists near the boundary. , 1995, Genomics.

[126]  Eduardo P C Rocha,et al.  Order and disorder in bacterial genomes. , 2004, Current opinion in microbiology.

[127]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[128]  D. Frishman,et al.  Assignment of isochores for all completely sequenced vertebrate genomes using a consensus , 2008, Genome Biology.

[129]  Maria da Luz Mathias,et al.  Environmental genetics: Rapid chromosomal evolution in island mice , 2000, Nature.

[130]  D. Conrad,et al.  Global variation in copy number in the human genome , 2006, Nature.

[131]  Paul Richardson,et al.  Human Chromosome 19 and Related Regions in Mouse: Conservative and Lineage-Specific Evolution , 2001, Science.

[132]  M. Noor,et al.  Chromosomal inversions and the reproductive isolation of species , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[133]  A. Ruiz-Herrera,et al.  Evolutionary conserved chromosomal segments in the human karyotype are bounded by unstable chromosome bands , 2004, Cytogenetic and Genome Research.

[134]  G. Bernardi,et al.  Replication timing, chromosomal bands, and isochores , 2008, Proceedings of the National Academy of Sciences.

[135]  A. Pombo,et al.  Intermingling of Chromosome Territories in Interphase Suggests Role in Translocations and Transcription-Dependent Associations , 2006, PLoS biology.

[136]  Erik L. L. Sonnhammer,et al.  Inparanoid: a comprehensive database of eukaryotic orthologs , 2004, Nucleic Acids Res..

[137]  Jeremy Buhler,et al.  Choosing the best heuristic for seeded alignment of DNA sequences , 2006, BMC Bioinformatics.

[138]  Yunmei Ma,et al.  Mechanism and regulation of human non-homologous DNA end-joining , 2003, Nature Reviews Molecular Cell Biology.

[139]  Mouse Genome Sequencing Consortium Initial sequencing and comparative analysis of the mouse genome , 2002, Nature.

[140]  M. Ferguson-Smith,et al.  Mammalian karyotype evolution , 2007, Nature Reviews Genetics.

[141]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[142]  P. Donnelly,et al.  A Fine-Scale Map of Recombination Rates and Hotspots Across the Human Genome , 2005, Science.

[143]  P. D. de Jong,et al.  Independent intrachromosomal recombination events underlie the pericentric inversions of chimpanzee and gorilla chromosomes homologous to human chromosome 16. , 2005, Genome research.

[144]  David Sankoff,et al.  The Statistical Analysis of Spatially Clustered Genes under the Maximum Gap Criterion , 2005, J. Comput. Biol..

[145]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[146]  J. Lobry,et al.  Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. , 1999, Gene.

[147]  Peer Bork,et al.  Comparative architectures of mammalian and chicken genomes reveal highly variable rates of genomic rearrangements across different lineages. , 2005, Genome research.

[148]  S. Scherer,et al.  Murine segmental duplications are hot spots for chromosome and gene evolution. , 2005, Genomics.

[149]  D. Haussler,et al.  Evolution's cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[150]  M. Rocchi,et al.  Insertion of telomeric repeats at intrachromosomal break sites during primate evolution. , 2004, Genome research.

[151]  B. Emanuel,et al.  Two different forms of palindrome resolution in the human genome: deletion or translocation. , 2008, Human molecular genetics.

[152]  B. Dutrillaux,et al.  Reconstruction of the ancestral karyotype of eutherian mammals , 2004, Chromosome Research.

[153]  D. Cooper,et al.  The chimpanzee-specific pericentric inversions that distinguish humans and chimpanzees have identical breakpoints in Pan troglodytes and Pan paniscus. , 2006, Genomics.

[154]  M. Batzer,et al.  Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages , 2005, Nucleic acids research.

[155]  Wen-Hsiung Li,et al.  Mutation rates differ among regions of the mammalian genome , 1989, Nature.

[156]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[157]  Lisa M. D'Souza,et al.  Genome sequence of the Brown Norway rat yields insights into mammalian evolution , 2004, Nature.

[158]  Michael Ashburner,et al.  Principles of Genome Evolution in the Drosophila melanogaster Species Group , 2007, PLoS biology.

[159]  Marie-France Sagot,et al.  A small trip in the untranquil world of genomes: A survey on the detection and analysis of genome rearrangement breakpoints , 2008, Theor. Comput. Sci..

[160]  B. Emanuel,et al.  Molecular cloning of a translocation breakpoint hotspot in 22q11. , 2007, Genome research.

[161]  F. Casals,et al.  Chromosomal evolution: Inversions: the chicken or the egg? , 2007, Heredity.

[162]  H. Hameister,et al.  Breakpoint analysis of the pericentric inversion between chimpanzee chromosome 10 and the homologous chromosome 12 in humans , 2004, Cytogenetic and Genome Research.

[163]  Mario Cáceres,et al.  A recurrent inversion on the eutherian X chromosome , 2007, Proceedings of the National Academy of Sciences.

[164]  B. Gómez-González,et al.  Genome instability: a mechanistic view of its causes and consequences , 2008, Nature Reviews Genetics.

[165]  J. Lobry Asymmetric substitution patterns in the two DNA strands of bacteria. , 1996, Molecular biology and evolution.

[166]  G. Marais,et al.  Biased gene conversion: implications for genome and sex evolution. , 2003, Trends in genetics : TIG.

[167]  Dominique Mouchiroud,et al.  CpGProD: identifying CpG islands associated with transcription start sites in large genomic mammalian sequences , 2002, Bioinform..

[168]  Y. Gray,et al.  It takes two transposons to tango: transposable-element-mediated chromosomal rearrangements. , 2000, Trends in genetics : TIG.

[169]  Todd J. Vision,et al.  Fast identification and statistical evaluation of segmental homologies in comparative maps , 2003, ISMB.

[170]  N. Galtier Gene conversion drives GC content evolution in mammalian histones. , 2003, Trends in genetics : TIG.

[171]  A. Clark,et al.  Local rates of recombination are positively correlated with GC content in the human genome. , 2001, Molecular biology and evolution.

[172]  D. Gudbjartsson,et al.  A high-resolution recombination map of the human genome , 2002, Nature Genetics.

[173]  L. Pachter,et al.  Strategies and tools for whole-genome alignments. , 2002, Genome research.

[174]  David L. Steffen,et al.  The DNA sequence of the human X chromosome , 2005, Nature.

[175]  B. Kerem,et al.  The molecular basis of common and rare fragile sites. , 2006, Cancer letters.

[176]  Matthias Platzer,et al.  Molecular characterization of the pericentric inversion that causes differences between chimpanzee chromosome 19 and human chromosome 17. , 2002, American journal of human genetics.

[177]  Leng Han,et al.  CpG island density and its correlations with genomic features in mammalian genomes , 2008, Genome Biology.

[178]  R. Farber,et al.  Incorrect use of the term synteny , 1999, Nature Genetics.

[179]  E. Eichler,et al.  A genome-wide survey of structural variation between human and chimpanzee. , 2005, Genome research.

[180]  E. McConkey,et al.  Inversion, duplication, and changes in gene context are associated with human chromosome 18 evolution. , 2004, Genomics.

[181]  Jean L. Chang,et al.  Initial sequence of the chimpanzee genome and comparison with the human genome , 2005, Nature.

[182]  Karen Usdin,et al.  The biological effects of simple tandem repeats: lessons from the repeat expansion diseases. , 2008, Genome research.

[183]  E. Eichler,et al.  Fine-scale structural variation of the human genome , 2005, Nature Genetics.

[184]  N. Barton,et al.  ACCUMULATING POSTZYGOTIC ISOLATION GENES IN PARAPATRY: A NEW TWIST ON CHROMOSOMAL SPECIATION , 2003, Evolution; international journal of organic evolution.

[185]  David N Cooper,et al.  Breakpoints of gross deletions coincide with non-B DNA conformations. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[186]  Lincoln Stein,et al.  Synbrowse: a Synteny Browser for Comparative Sequence Analysis , 2022 .

[187]  A. Gotter,et al.  A palindrome-driven complex rearrangement of 22q11.2 and 8q24.1 elucidated using novel technologies. , 2007, Genome research.

[188]  P. Stankiewicz,et al.  AT-rich repeats associated with chromosome 22q11.2 rearrangement disorders shape human genome architecture on Yq12. , 2007, Genome research.

[189]  L. Duret,et al.  Recombination drives the evolution of GC-content in the human genome. , 2004, Molecular biology and evolution.

[190]  Yong-shu He,et al.  [Structural variation in the human genome]. , 2009, Yi chuan = Hereditas.

[191]  Mathieu Raffinot,et al.  The Algorithmic of Gene Teams , 2002, WABI.

[192]  P. B. Coaker,et al.  Applied Dynamic Programming , 1964 .

[193]  Inna Dubchak,et al.  Automated whole-genome multiple alignment of rat, mouse, and human. , 2004, Genome research.

[194]  R. Redon,et al.  Copy Number Variation: New Insights in Genome Diversity References , 2006 .

[195]  Guy Perrière,et al.  Tree pattern matching in phylogenetic trees: automatic search for orthologs or paralogs in homologous gene sequence databases , 2005, Bioinform..

[196]  David Waddington,et al.  The dynamics of chromosome evolution in birds and mammals , 1999, Nature.

[197]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[198]  Colin N. Dewey,et al.  Evolution at the nucleotide level: the problem of multiple whole-genome alignment. , 2006, Human molecular genetics.