[Screening of Clostridium strains through ribosome engineering for improved butanol production].

We used ribosome engineering technology, with which antibiotic-resistant strains are resulted from mutations on microbial ribosome, to screen a high butanol-producing Clostridium strain. A novel mutant strain S3 with high butanol production and tolerance was obtained from the original Clostridium acetobutylicum L7 with the presence of mutagen of streptomycin. Butanol of 12.48 g/L and ethanol of 1.70 g/L were achieved in S3, 11.2% and 50%, respectively higher than the parent strain. The conversion rate of glucose to butanol increased from 0.19 to 0.22, and fermentation time was 9 h shorter. This caused an increase in butanol productivity by 30.5%, reaching 0.24 g/(Lh). The mutant butanol tolerance was increased from 12 g/L to 14 g/L, the viscosity of fermentation broth was dramatically decreased to 4 mPa/s, 60% lower than the parent strain. In addition, the genetic stability of mutant strain S3 was also favorable. These results demonstrate that ribosome engineering technology may be a promising process for developing high butanol-producing strains.