Realization of the Terrestrial Reference System by a reprocessed global GPS network

[1] We present a GPS-only reference frame named PDR05 (Potsdam-Dresden-Reprocessing TRF 2005) based on the results of a homogeneous reprocessing of a global GPS network over the time span 1994.0–2006.0. The reference frame is realized in the center of mass (CM) system. This implies that a self-consistent model considering the reference frame and loading dynamics has been applied. The determined set of coordinates at epoch 2000.0 and their linear changes with time are evaluated in terms of self-consistency and are compared to other realizations of the Terrestrial Reference System (TRS), such as ITRF2000, ITRF2005, and the GPS-only realizations IGb00 and IGS05. We demonstrate that GPS is able to realize a TRS with the origin in the center of mass and a scale which are both on an equivalent level of self-consistency, stability, and precision as other space techniques. The results show the high potential of homogeneously reprocessed GPS networks for future International Terrestrial Reference System (ITRS) realizations and for the realization of the Global Geodetic Observing System (GGOS). Hence, PDR05 represents a stable metrological basis for global geodynamic investigations.

[1]  L. Mervart,et al.  Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. , 1994 .

[2]  Gerd Gendt,et al.  The International GPS Service: Celebrating the 10th anniversary and looking to the next decade , 2005 .

[3]  Walter H. F. Smith,et al.  Free software helps map and display data , 1991 .

[4]  J. Saastamoinen,et al.  Contributions to the theory of atmospheric refraction , 1972 .

[5]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[6]  J. Saastamoinen Contributions to the theory of atmospheric refraction , 1972 .

[7]  J. Zumberge,et al.  Comparison of a GPS-defined global reference frame with ITRF2000 , 2002 .

[8]  Markus Rothacher,et al.  Processing Strategies for Regional GPS Networks , 1998 .

[9]  Jim R. Ray,et al.  Recent Improvements to IERS Bulletin A Combination and Prediction , 2001, GPS Solutions.

[10]  A. Niell Global mapping functions for the atmosphere delay at radio wavelengths , 1996 .

[11]  Zuheir Altamimi,et al.  ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications , 2002 .

[12]  R. Nerem,et al.  Geophysical interpretation of observed geocenter variations , 1999 .

[13]  S. Holgate,et al.  Evidence for enhanced coastal sea level rise during the 1990s , 2004 .

[14]  Peter Steigenberger,et al.  Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas , 2007 .

[15]  Anny Cazenave,et al.  Geocentre motion from the DORIS space system and laser data to the Lageos satellites: comparison with surface loading data , 2000 .

[16]  J. Johansson,et al.  Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results , 2002 .

[17]  Philip Moore,et al.  Geocentre variation from laser tracking of LAGEOS and loading data , 2003 .

[18]  Gerard Petit,et al.  IERS Conventions (2003) , 2004 .

[19]  W. Peltier,et al.  Greenland glacial history and local geodynamic consequences , 2002 .

[20]  Zuheir Altamimi,et al.  IGS reference frames: status and future improvements , 2004 .

[21]  Michael B. Heflin,et al.  Site distribution and aliasing effects in the inversion for load coefficients and geocenter motion from GPS data , 2002 .

[22]  P. Berio,et al.  Geocentre motion measured with DORIS and SLR, and predicted by geophysical models , 2006 .

[23]  J. Wahr,et al.  Effect of melting glaciers on the Earth's rotation and gravitational field: 1965–1984 , 1992 .

[24]  J. Ray,et al.  Anomalous harmonics in the spectra of GPS position estimates , 2008 .

[25]  Hermann Drewes,et al.  Science rationale of the Global Geodetic Observing System (GGOS) , 2007 .

[26]  R. Detrick,et al.  Island subsidence, hot spots, and lithospheric thinning , 1978 .

[27]  Peter Steigenberger,et al.  Impact of higher‐order ionospheric terms on GPS estimates , 2005 .

[28]  Jean-François Crétaux,et al.  Seasonal and interannual geocenter motion from SLR and DORIS measurements: Comparison with surface loading data , 2002 .

[29]  G. Blewitt,et al.  A New Global Mode of Earth Deformation: Seasonal Cycle Detected , 2001, Science.

[30]  Z. Altamimi,et al.  The impact of a No‐Net‐Rotation Condition on ITRF2000 , 2003 .

[31]  E. Ivins,et al.  Antarctic glacial isostatic adjustment: a new assessment , 2005, Antarctic Science.

[32]  A. E. Niell,et al.  Improved atmospheric mapping functions for VLBI and GPS , 2000 .

[33]  Peter J. Clarke,et al.  Inversion of Earth's changing shape to weigh sea level in static equilibrium with surface mass redistribution , 2003 .

[34]  Michael B. Heflin,et al.  Global coordinates with centimeter accuracy in the International Terrestrial Reference Frame using GPS , 1992 .

[35]  Tomás Soler,et al.  Rigorous transformation of variance–covariance matrices of GPS-derived coordinates and velocities , 2002 .

[36]  C. Demets,et al.  Crustal velocity field of Mexico from continuous GPS measurements, 1993 to June 2001: Implications for the neotectonics of Mexico , 2003 .

[37]  Jean-François Crétaux,et al.  Sea level changes from Topex‐Poseidon altimetry and tide gauges, and vertical crustal motions from DORIS , 1999 .

[38]  T. P. Yunck,et al.  Origin of the International Terrestrial Reference Frame , 2003 .

[39]  Geoffrey Blewitt,et al.  Crustal displacements due to continental water loading , 2001 .

[40]  Peter Steigenberger,et al.  Reprocessing of a global GPS network , 2006 .

[41]  M. Cheng Geocenter Variations from Analysis of Topex/Poseidon SLR Data , 1999 .

[42]  Martin Schmitz,et al.  Results of Absolute Field Calibration of GPS Antenna PCV , 1998 .

[43]  Peter Steigenberger,et al.  Influence of mapping function parameters on global GPS network analyses: Comparisons between NMF and IMF , 2006 .

[44]  M. K. Cheng,et al.  Geocenter variations caused by atmosphere, ocean and surface ground water , 1997 .

[45]  W. R. Peltier,et al.  Postglacial variations in the level of the sea: Implications for climate dynamics and solid‐Earth geophysics , 1998 .

[46]  G. Blewitt Self‐consistency in reference frames, geocenter definition, and surface loading of the solid Earth , 2003 .

[47]  Peter Steigenberger,et al.  Comparisons of homogeneously reprocessed GPS and VLBI long time-series of troposphere zenith delays and gradients , 2007 .

[48]  Bruce C. Douglas,et al.  The Puzzle of Global Sea-Level Rise , 2002 .

[49]  Richard D. Ray,et al.  A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2 , 1999 .

[50]  Michael B. Heflin,et al.  Precise determination of earth's center of mass using measurements from the Global Positioning System , 1992 .

[51]  Tilo Schöne,et al.  IGS Tide Gauge Benchmark Monitoring Pilot Project (TIGA): scientific benefits , 2009 .

[52]  R. Dietrich,et al.  Present-day vertical crustal deformations in West Greenland from repeated GPS observations , 2005 .

[53]  Z. Altamimi,et al.  ITRF2005 : A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters , 2007 .

[54]  Peter J. Clarke,et al.  Geocenter motions from GPS: A unified observation model , 2006 .

[55]  Zuheir Altamimi,et al.  Is there utility in rigorous combinations of VLBI and GPS Earth orientation parameters? , 2005 .