Infrared absorption cross sections for methanol

Infrared absorption cross sections for methanol, CH3OH, have been determined near 3.4 and 10 mm from spectra recorded using a high-resolution FTIR spectrometer (Bruker IFS 125HR) and a multipass cell with a maximum optical path length of 19.3 m. Methanol/ dry synthetic air mixtures were prepared and spectra were recorded at 0.015 cm � 1 resolution (calculated as 0.9/MOPD) at a number of temperatures and pressures (50- 760 Torr and 204-296 K) appropriate for atmospheric conditions. Intensities were calibrated using composite methanol spectra taken from the Pacific Northwest National Laboratory (PNNL) IR database. The new measurements in the 10 mm region indicate problems with the existing methanol spectroscopic line parameters in the HITRAN database, which will impact the accuracy of satellite retrievals.

[1]  D. Jacob,et al.  Evidence from the Pacific troposphere for large global sources of oxygenated organic compounds , 2001, Nature.

[2]  Carl A. Gottlieb,et al.  Detection of Methyl Alcohol in Sagittarius , 1970 .

[3]  R. H. Hunt,et al.  Torsion-rotation absorption line assignments in the symmetric CH-stretch fundamental of methanol , 1991 .

[4]  P. Crutzen,et al.  High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere , 1995, Nature.

[5]  P. Bernath,et al.  Mid-infrared absorption cross sections for acetone (propanone) , 2011 .

[6]  P. Bernath,et al.  Mid- and long-wave infrared absorption cross sections for acetonitrile , 2012 .

[7]  Peter F. Bernath,et al.  Atmospheric chemistry experiment (ACE): mission overview , 2004, SPIE Optics + Photonics.

[8]  Kristen Averyt,et al.  Climate change 2007: Synthesis Report. Contribution of Working Group I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. , 2007 .

[9]  Richard L. Myers,et al.  The 100 Most Important Chemical Compounds , 2007 .

[10]  Masson-Delmotte,et al.  The Physical Science Basis , 2007 .

[11]  Li-Hong Xu,et al.  Empirical line intensities of methanol in the 300–500 cm−1 region , 2012 .

[12]  Peng Wang,et al.  New assignments, line intensities, and HITRAN database for CH3OH at 10 μm , 2004 .

[13]  D. Bockelée-Morvan,et al.  On the Origin of the 3.2- to 3.6-μm Emission Features in Comets , 1995 .

[14]  P. Bernath,et al.  Infrared absorption cross sections for ethane ( C 2 H 6 ) in the 3 m m region , 2009 .

[15]  D. Hauglustaine,et al.  The influence of biogenic emissions on upper-tropospheric methanol as revealed from space , 2007 .

[16]  S. Solomon IPCC (2007): Climate Change The Physical Science Basis , 2007 .

[17]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[18]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[19]  Wang,et al.  Sub-Doppler Infrared Spectra and Torsion-Rotation Energy Manifold of Methanol in the CH-Stretch Fundamental Region , 1997, Journal of molecular spectroscopy.

[20]  P. Bernath,et al.  First space-borne measurements of methanol inside aged tropical biomass burning plumes using the ACE-FTS instrument , 2006 .

[21]  J. D. de Gouw,et al.  Tropospheric methanol observations from space: retrieval evaluation and constraints on the seasonality of biogenic emissions. , 2012, Atmospheric chemistry and physics.

[22]  P. Bernath,et al.  Infrared absorption cross sections for acetone (propanone) in the 3 μm region , 2011 .

[23]  D. Jacob,et al.  Global budget of methanol : Constraints from atmospheric observations , 2005 .

[24]  Lieven Clarisse,et al.  IASI measurements of reactive trace species in biomass burning plumes , 2009 .

[25]  Reinhard Beer,et al.  First satellite observations of lower tropospheric ammonia and methanol , 2008 .

[26]  T. Shimanouchi Tables of molecular vibrational frequencies, part 1 , 1967 .

[27]  B. Heikes,et al.  Atmospheric methanol budget and ocean implication , 2002 .

[28]  P. Bernath,et al.  Spectroscopic requirements for ACCURATE, a microwave and infrared-laser occultation satellite mission , 2011 .

[29]  D. Despois,et al.  Microwave detection of hydrogen sulphide and methanol in comet Austin (1989c1) , 1991, Nature.

[30]  G. Villanueva,et al.  A QUANTUM BAND MODEL OF THE ν3 FUNDAMENTAL OF METHANOL (CH3OH) AND ITS APPLICATION TO FLUORESCENCE SPECTRA OF COMETS , 2012 .

[31]  E. Herbst,et al.  OBSERVATIONAL CONSTRAINTS ON METHANOL PRODUCTION IN INTERSTELLAR AND PREPLANETARY ICES , 2011 .

[32]  C. Yaws Chemical properties handbook , 1999 .

[33]  P. Bernath,et al.  Acetonitrile (CH3CN) infrared absorption cross sections in the 3 μm region , 2011 .

[34]  W. Malkmus,et al.  Temperature Dependence of the Total Integrated Intensity of Vibrational—Rotational Band Systems , 1965 .

[35]  T. Johnson,et al.  Gas-Phase Databases for Quantitative Infrared Spectroscopy , 2004, Applied spectroscopy.