Chapter G 2 Carbon emissions from land use and landcover change

Introduction Conclusions References

[1]  Philippe Ciais,et al.  Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions , 2011 .

[2]  M. Kanninen,et al.  Mangroves among the most carbon-rich forests in the tropics , 2011 .

[3]  Stephen V. Stehman,et al.  International Journal of Applied Earth Observation and Geoinformation: Time-Series Analysis of Multi-Resolution Optical Imagery for Quantifying Forest Cover Loss in Sumatra and Kalimantan, Indonesia , 2011 .

[4]  S. Doney,et al.  Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere , 2011 .

[5]  R. Houghton,et al.  Gross CO2 fluxes from land-use change: implications for reducing global emissions and increasing sinks , 2011 .

[6]  Matthew C. Hansen,et al.  Remotely sensed forest cover loss shows high spatial and temporal variation across Sumatera and Kalimantan, Indonesia 2000–2008 , 2011 .

[7]  Kees Klein Goldewijk,et al.  The HYDE 3.1 spatially explicit database of human‐induced global land‐use change over the past 12,000 years , 2011 .

[8]  Vivek K. Arora,et al.  Uncertainties in the 20th century carbon budget associated with land use change , 2010 .

[9]  J. Randerson,et al.  Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009) , 2010 .

[10]  Pete Smith,et al.  The net biome production of full crop rotations in Europe , 2010 .

[11]  John F. Mustard,et al.  Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon , 2010, Proceedings of the National Academy of Sciences.

[12]  Gregg Marland,et al.  Cropland carbon fluxes in the United States: increasing geospatial resolution of inventory-based carbon accounting. , 2010, Ecological applications : a publication of the Ecological Society of America.

[13]  M. Hansen,et al.  Quantification of global gross forest cover loss , 2010, Proceedings of the National Academy of Sciences.

[14]  Thomas Raddatz,et al.  Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change , 2010 .

[15]  Fortunat Joos,et al.  Sensitivity of Holocene atmospheric CO 2 and the modern carbon budget to early human land use: analyses with a process-based model , 2010 .

[16]  R. Houghton,et al.  How well do we know the flux of CO2 from land-use change? , 2010 .

[17]  Fábio Guimarães Gonçalves,et al.  Vegetation profiles in tropical forests from multibaseline interferometric synthetic aperture radar, field, and lidar measurements , 2009 .

[18]  Florian Siegert,et al.  Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands , 2009, Proceedings of the National Academy of Sciences.

[19]  P. Ciais,et al.  Spatiotemporal patterns of terrestrial carbon cycle during the 20th century , 2009 .

[20]  G. Asner,et al.  Long‐term carbon loss and recovery following selective logging in Amazon forests , 2009 .

[21]  M. Claussen,et al.  Effects of anthropogenic land cover change on the carbon cycle of the last millennium , 2009 .

[22]  Corinne Le Quéré,et al.  Trends in the sources and sinks of carbon dioxide , 2009 .

[23]  J. Randerson,et al.  Assessing variability and long-term trends in burned area by merging multiple satellite fire products , 2009 .

[24]  Christopher Potter,et al.  Carbon emissions from deforestation in the Brazilian Amazon Region , 2009 .

[25]  John M. Melack,et al.  Lakes and reservoirs as regulators of carbon cycling and climate , 2009 .

[26]  R. B. Jackson,et al.  CO 2 emissions from forest loss , 2009 .

[27]  K. Ruokolainen,et al.  Amazonian peatlands: an ignored C sink and potential source , 2009 .

[28]  Josep G. Canadell,et al.  Current and future CO 2 emissions from drained peatlands in Southeast Asia , 2009 .

[29]  Bas Eickhout,et al.  The importance of three centuries of land-use change for the global and regional terrestrial carbon cycle , 2009 .

[30]  Matthew C. Hansen,et al.  Quantifying changes in the rates of forest clearing in Indonesia from 1990 to 2005 using remotely sensed data sets , 2009 .

[31]  C. Müller,et al.  Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study , 2009 .

[32]  George C. Hurtt,et al.  Carbon cycling under 300 years of land use change: Importance of the secondary vegetation sink , 2009 .

[33]  J. Randerson,et al.  Climate regulation of fire emissions and deforestation in equatorial Asia , 2008, Proceedings of the National Academy of Sciences.

[34]  Scott J. Goetz,et al.  New Satellites Help Quantify Carbon Sources and Sinks , 2008 .

[35]  J. Randerson,et al.  Agricultural intensification increases deforestation fire activity in Amazonia , 2008 .

[36]  F. Joos,et al.  Climate and human influences on global biomass burning over the past two millennia , 2008 .

[37]  J. Randerson,et al.  Estimates of fire emissions from an active deforestation region in the southern Amazon based on satellite data and biogeochemical modelling , 2008 .

[38]  Thomas Raddatz,et al.  A reconstruction of global agricultural areas and land cover for the last millennium , 2008 .

[39]  J. Townshend,et al.  Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data , 2008, Proceedings of the National Academy of Sciences.

[40]  D. Roy,et al.  A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin , 2008 .

[41]  D. Roy,et al.  The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally , 2008 .

[42]  J. Mustard,et al.  Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil , 2008 .

[43]  G. Fischer,et al.  Simulating effects of land use changes on carbon fluxes: past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity , 2008 .

[44]  Manabu Watanabe,et al.  ALOS PALSAR: A Pathfinder Mission for Global-Scale Monitoring of the Environment , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[45]  R. Houghton,et al.  Mapping Russian forest biomass with data from satellites and forest inventories , 2007 .

[46]  J. V. Soares,et al.  Distribution of aboveground live biomass in the Amazon basin , 2007 .

[47]  F. Achard,et al.  Challenges to estimating carbon emissions from tropical deforestation , 2007 .

[48]  Kirsten Halsnæs,et al.  Technical Summary. In Climate change 2007: Mitigation , 2007 .

[49]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[50]  P. Caccetta,et al.  Continental Monitoring : 34 Years of Land Cover Change Using Landsat Imagery , 2007 .

[51]  J. Harte,et al.  The Significance of the Erosion-induced Terrestrial Carbon Sink , 2006 .

[52]  R. DeFries,et al.  Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon , 2006, Proceedings of the National Academy of Sciences.

[53]  R. Houghton,et al.  Aboveground Forest Biomass and the Global Carbon Balance , 2005 .

[54]  Bas Eickhout,et al.  Impacts of future land cover changes on atmospheric CO2 and climate , 2005 .

[55]  Jeroen A. H. W. Peters,et al.  Recent trends in global greenhouse gas emissions:regional trends 1970–2000 and spatial distributionof key sources in 2000 , 2005 .

[56]  Frédéric Achard,et al.  Improved estimates of net carbon emissions from land cover change in the tropics for the 1990s , 2004 .

[57]  Yoram J. Kaufman,et al.  An Enhanced Contextual Fire Detection Algorithm for MODIS , 2003 .

[58]  Mian Chin,et al.  Indonesian wildfires of 1997: Impact on tropospheric chemistry , 2003 .

[59]  Pete Smith,et al.  Europe's Terrestrial Biosphere Absorbs 7 to 12% of European Anthropogenic CO2 Emissions , 2003, Science.

[60]  P. Ciais,et al.  Amplifying effects of land‐use change on future atmospheric CO2 levels , 2003 .

[61]  R. Houghton Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850 – 2000 , 2003 .

[62]  J. Townshend,et al.  Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[63]  F. Achard,et al.  Determination of Deforestation Rates of the World's Humid Tropical Forests , 2002, Science.

[64]  R. Gifford,et al.  Soil carbon stocks and land use change: a meta analysis , 2002 .

[65]  K. Paustian,et al.  National-scale estimation of changes in soil carbon stocks on agricultural lands. , 2002, Environmental pollution.

[66]  Ross E. McMurtrie,et al.  Does conversion of forest to agricultural land change soil carbon and nitrogen? a review of the literature , 2002 .

[67]  Samuel N. Goward,et al.  Landsat 7's long-term acquisition plan — an innovative approach to building a global imagery archive , 2001 .

[68]  Robert W. Buddemeier,et al.  Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States , 2001 .

[69]  K. K. Goldewijk Estimating global land use change over the past 300 years: The HYDE Database , 2001 .

[70]  R. Lal Potential of Desertification Control to Sequester Carbon and Mitigate the Greenhouse Effect , 2001 .

[71]  Ward N. Smith,et al.  The net flux of carbon from agricultural soils in Canada 1970–2010 , 2000 .

[72]  N. Ramankutty,et al.  Estimating historical changes in global land cover: Croplands from 1700 to 1992 , 1999 .

[73]  Houghton,et al.  The U.S. Carbon budget: contributions from land-Use change , 1999, Science.

[74]  R. Houghton The annual net flux of carbon to the atmosphere from changes in land use 1850–1990* , 1999 .

[75]  Robert F. Stallard,et al.  Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial , 1998 .

[76]  J. Randerson,et al.  Terrestrial ecosystem production: A process model based on global satellite and surface data , 1993 .

[77]  L. R. Oldeman The Global Extent of Soil Degradation , 1992 .

[78]  George M. Woodwell,et al.  The role of terrestrial vegetation in the global carbon cycle : measurement by remote sensing , 1985 .

[79]  Gu Lb,et al.  Soil carbon stocks and land use change : a meta analysis , 2022 .