Adapting to Unknown Smoothness by Aggregation of Thresholded Wavelet Estimators
暂无分享,去创建一个
[1] A. Gardner. Methods of Statistics , 1941 .
[2] Vladimir Vovk,et al. Aggregating strategies , 1990, COLT '90.
[3] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[4] D. L. Donoho,et al. Ideal spacial adaptation via wavelet shrinkage , 1994 .
[5] A. Cohen. Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, I. Daubechies, SIAM, 1992, xix + 357 pp. , 1994 .
[6] I. Johnstone,et al. Wavelet Shrinkage: Asymptopia? , 1995 .
[7] G. Nason. Choice of the Threshold Parameter in Wavelet Function Estimation , 1995 .
[8] I. Johnstone,et al. Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .
[9] G. Kerkyacharian,et al. Adaptive Density Estimation , 1996 .
[10] Y. Benjamini,et al. Adaptive thresholding of wavelet coefficients , 1996 .
[11] A. Juditsky,et al. On Minimax Wavelet Estimators , 1996 .
[12] I. Johnstone,et al. Density estimation by wavelet thresholding , 1996 .
[13] K. Burnham,et al. Model selection: An integral part of inference , 1997 .
[14] T. Cai. On Adaptivity Of BlockShrink Wavelet Estimator Over Besov Spaces , 1997 .
[15] H. Chipman,et al. Adaptive Bayesian Wavelet Shrinkage , 1997 .
[16] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[17] B. Silverman,et al. Wavelet thresholding via a Bayesian approach , 1998 .
[18] P. Hall,et al. Block threshold rules for curve estimation using kernel and wavelet methods , 1998 .
[19] Hong-Ye Gao,et al. Wavelet Shrinkage Denoising Using the Non-Negative Garrote , 1998 .
[20] Norman Weyrich,et al. Wavelet shrinkage and generalized cross validation for image denoising , 1998, IEEE Trans. Image Process..
[21] P. Hall,et al. ON THE MINIMAX OPTIMALITY OF BLOCK THRESHOLDED WAVELET ESTIMATORS , 1999 .
[22] T. Cai. Adaptive wavelet estimation : A block thresholding and oracle inequality approach , 1999 .
[23] E. Mammen,et al. Smooth Discrimination Analysis , 1999 .
[24] S. Efromovich. Quasi-Linear Wavelet Estimation , 1999 .
[25] Yuhong Yang. Mixing Strategies for Density Estimation , 2000 .
[26] A. Juditsky,et al. Functional aggregation for nonparametric regression , 2000 .
[27] Sam Efromovich,et al. Sharp linear and block shrinkage wavelet estimation , 2000 .
[28] D. Picard,et al. Adaptive confidence interval for pointwise curve estimation , 2000 .
[29] Anestis Antoniadis,et al. Wavelet Estimators in Nonparametric Regression: A Comparative Simulation Study , 2001 .
[30] Maarten Jansen,et al. Noise Reduction by Wavelet Thresholding , 2001 .
[31] B. Silverman,et al. Incorporating Information on Neighboring Coefficients Into Wavelet Estimation , 2001 .
[32] P. Massart,et al. Gaussian model selection , 2001 .
[33] B. Silverman,et al. Some new methods for wavelet density estimation , 2001 .
[34] Yuhong Yang. Minimax rate adaptive estimation over continuous hyper-parameters , 2001, IEEE Trans. Inf. Theory.
[35] Tong Zhang. Statistical behavior and consistency of classification methods based on convex risk minimization , 2003 .
[36] A. Tsybakov,et al. Optimal aggregation of classifiers in statistical learning , 2003 .
[37] Alexandre B. Tsybakov,et al. Optimal Rates of Aggregation , 2003, COLT.
[38] Olivier Catoni,et al. Statistical learning theory and stochastic optimization , 2004 .
[39] J. Picard,et al. Statistical learning theory and stochastic optimization : École d'eté de probabilités de Saint-Flour XXXI - 2001 , 2004 .
[40] I. Johnstone,et al. Adapting to unknown sparsity by controlling the false discovery rate , 2005, math/0505374.
[41] Alexander V. Nazin,et al. Recursive Aggregation of Estimators by the Mirror Descent Algorithm with Averaging , 2005, Probl. Inf. Transm..
[42] G. Lecu'e. Simultaneous adaptation to the margin and to complexity in classification , 2005, math/0509696.
[43] I. Johnstone,et al. Empirical Bayes selection of wavelet thresholds , 2005, math/0508281.
[44] T. Cai,et al. Block thresholding for density estimation: local and global adaptivity , 2005 .
[45] Cun-Hui Zhang. General empirical Bayes wavelet methods and exactly adaptive minimax estimation , 2005, math/0504501.
[46] Guillaume Lecué. Optimal rates of aggregation in classification , 2006 .
[47] Guillaume Lecué. Lower Bounds and Aggregation in Density Estimation , 2006, J. Mach. Learn. Res..
[48] V. Koltchinskii. Local Rademacher complexities and oracle inequalities in risk minimization , 2006, 0708.0083.
[49] Gábor Lugosi,et al. Prediction, learning, and games , 2006 .
[50] Guillaume Lecué,et al. Optimal Oracle Inequality for Aggregation of Classifiers Under Low Noise Condition , 2006, COLT.
[51] Andrew R. Barron,et al. Information Theory and Mixing Least-Squares Regressions , 2006, IEEE Transactions on Information Theory.
[52] L. Birge,et al. Model selection via testing: an alternative to (penalized) maximum likelihood estimators , 2006 .
[53] Guillaume Lecué,et al. Suboptimality of Penalized Empirical Risk Minimization in Classification , 2007, COLT.
[54] Ingo Steinwart,et al. Fast rates for support vector machines using Gaussian kernels , 2007, 0708.1838.
[55] P. Massart,et al. Concentration inequalities and model selection , 2007 .
[56] Guillaume Lecu 'e. Suboptimality of Penalized Empirical Risk Minimization in Classification , 2007 .
[57] Andrew B. Nobel,et al. Sequential Procedures for Aggregating Arbitrary Estimators of a Conditional Mean , 2008, IEEE Transactions on Information Theory.
[58] A. Juditsky,et al. Learning by mirror averaging , 2005, math/0511468.