An explicit four-step phase-fitted method for the numerical integration of second-order initial-value problems

Abstract An explicit four-step method with phase-lag of infinite order is developed for the numerical integration of second-order initial-value problems. Extensive numerical testing indicates that this new method can be generally more efficient than other four-step methods.

[1]  L. Brusa,et al.  A one‐step method for direct integration of structural dynamic equations , 1980 .

[2]  Ralph A. Willoughby,et al.  EFFICIENT INTEGRATION METHODS FOR STIFF SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS , 1970 .

[3]  M. M. Chawla,et al.  An explicit sixth-order method with phase-lag of order eight for y ″= f ( t , y ) , 1987 .

[4]  R. Thomas,et al.  Phase properties of high order, almostP-stable formulae , 1984 .

[5]  J. W. Cooley,et al.  An improved eigenvalue corrector formula for solving the Schrödinger equation for central fields , 1961 .

[6]  T. E. Simos,et al.  Numerical integration of the one-dimensional Schro¨dinger equations , 1990 .

[7]  A. D. Raptis,et al.  A four-step phase-fitted method for the numerical integration of second order initial-value problems , 1991 .

[8]  P. J. Van Der Houmen,et al.  Predictor-corrector methods for periodic second-order initial-value problems , 1987 .

[9]  J. M. Franco,et al.  High-order P-stable multistep methods , 1990 .

[10]  M H Chawla,et al.  A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value , 1986 .

[11]  R. Van Dooren Stabilization of Cowell's classical finite difference method for numerical integration , 1974 .

[12]  John P. Coleman Numerical Methods for y″ =f(x, y) via Rational Approximations for the Cosine , 1989 .

[13]  M. M. Chawla,et al.  Two-step fourth-order P-stable methods with phase-lag of order six for y ″=( t,y ) , 1986 .