Integral representations for computing real parabolic cylinder functions
暂无分享,去创建一个
[1] Nico Temme,et al. Steepest descent paths for integrals defining the modified Bessel functions of imaginary order , 1993 .
[2] J. C. P. Miller. On the choice of standard solutions to Weber's equation , 1952 .
[3] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[4] F. W. J. Olver,et al. Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders , 1959 .
[5] R. Wong. Fundamental Concepts of Asymptotics , 1989 .
[6] Walter Gautschi,et al. NUMERICAL EVALUATION OF SPECIAL FUNCTIONS , 2001 .
[7] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[8] F. Olver,et al. INTRODUCTION TO SPECIAL FUNCTIONS , 1974 .
[9] Nico M. Temme,et al. On nonoscillating integrals for computing inhomogeneous Airy functions , 2001, Math. Comput..
[10] N. Temme. Special Functions: An Introduction to the Classical Functions of Mathematical Physics , 1996 .
[11] F. Olver. Asymptotics and Special Functions , 1974 .
[12] Roderick Wong,et al. Asymptotic approximations of integrals , 1989, Classics in applied mathematics.
[13] A. Fletcher,et al. Tables of Weber Parabolic Cylinder Functions , 1957 .
[14] Nico M. Temme,et al. Numerical and asymptotic aspects of parabolic cylinder functions , 2001, math/0109188.