Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis

Physical gas adsorption is extensively used in the characterization of micro- and mesoporous materials and is often considered as a straightforward-to-interpret technique. However, physical phenomena like the tensile strength effect, adsorbate phase transitions, and monolayer formation in combined micro- and mesoporous materials frequently lead to extra contributions in the adsorption isotherm. Models for pore size determination mostly do not account for this, and assignment to real pores leads to improper analysis of adsorption data. In this review, common pitfalls and limitations in the analysis of pore size distributions derived from adsorption isotherms of micro- and mesoporous materials are identified and discussed based on new results and examples reported in the recent literature.

[1]  A. Galarneau,et al.  Zeolites and mesoporous materials at the dawn of the 21st century : proceedings of the 13th International Zeolite Conference, Montpellier, France, 8-13 July 2001 , 2001 .

[2]  R. Mao,et al.  Production of Porous Materials by Dealumination of Alumina-Rich Zeolites , 1994 .

[3]  L. Sarkisov,et al.  Modeling of Adsorption and Desorption in Pores of Simple Geometry Using Molecular Dynamics , 2001 .

[4]  J. Patarin,et al.  Adsorption by MFI-type zeolites examined by isothermal microcalorimetry and neutron diffraction. 1. Argon, krypton, and methane , 1993 .

[5]  Limin Huang,et al.  Investigation of Synthesizing MCM-41/ZSM-5 Composites , 2000 .

[6]  H. C. Foley,et al.  Curvature and parametric sensitivity in models for adsorption in micropores , 1991 .

[7]  V. Pârvulescu,et al.  Preparation and characterisation of mesoporous zirconium oxide , 2001 .

[8]  P. Bugge,et al.  Surface Area Determination , 1946, Nature.

[9]  M. Dubinin,et al.  Comments on the limits of applicability of the mechanism of capillary condensation , 1969 .

[10]  Gao Qing Lu,et al.  Advances in mesoporous molecular sieve MCM-41 , 1996 .

[11]  D. Zhao,et al.  Hierarchical porous structures by using zeolite nanocrystals as building blocks , 2001 .

[12]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[13]  T. Okuhara,et al.  Highly porous vanadium phosphorus oxides derived from vanadyl n-butylphosphate , 2002 .

[14]  M. Thommes,et al.  Sorption and pore condensation behavior of pure fluids in mesoporous MCM-48 silica, MCM-41 silica, SBA-15 silica and controlled-pore glass at temperatures above and below the bulk triple point , 2002 .

[15]  Douglas M. Smith,et al.  Characterization of Porous Solids , 1994 .

[16]  F. Kapteijn,et al.  Characterization and performance of Pt-USY in the SCR of NOx with hydrocarbons under lean-burn conditions , 2001 .

[17]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[18]  L. Sarkisov,et al.  CHARACTERIZATION OF POROUS SOLIDS V , 2000 .

[19]  Mark E. Davis Organizing for better synthesis , 1993, Nature.

[20]  A. Corma,et al.  Catalytic Performance of the New Delaminated ITQ-2 Zeolite for Mild Hydrocracking and Aromatic Hydrogenation Processes , 2001 .

[21]  Huxing Chen,et al.  Preparation of MCM-41 with high thermal stability and complementary textural porosity , 2002 .

[22]  B. Weckhuysen,et al.  Plugged hexagonal templated silica: a unique micro- and mesoporous composite material with internal silica nanocapsules. , 2002, Chemical communications.

[23]  K. Kawazoe,et al.  METHOD FOR THE CALCULATION OF EFFECTIVE PORE SIZE DISTRIBUTION IN MOLECULAR SIEVE CARBON , 1983 .

[24]  Limin Huang,et al.  Characterization of Beta/MCM-41 composite molecular sieve compared with the mechanical mixture , 2001 .

[25]  D. Akporiaye,et al.  MCM-41: a model system for adsorption studies on mesoporous materials , 1995 .

[26]  A. Koster,et al.  Three-Dimensional Transmission Electron Microscopic Observations of Mesopores in Dealuminated Zeolite Y , 2001 .

[27]  K. Sing,et al.  The use of nitrogen adsorption for the characterisation of porous materials , 2001 .

[28]  T. Okuhara,et al.  Change in pore structure of MFI zeolite by treatment with NaOH aqueous solution , 2001 .

[29]  F. Kapteijn,et al.  Steam-activated FeMFI zeolites. Evolution of iron species and activity in direct N2O decomposition , 2003 .

[30]  J. Scherzer The Preparation and Characterization of Aluminum-Deficient Zeolites , 1984 .

[31]  F. Rodríguez-Reinoso,et al.  Textural and chemical characterization of microporous carbons , 1998 .

[32]  V. Ramaswamy,et al.  Synthesis, characterization, and catalytic properties of micro-mesoporous, amorphous titanosilicate catalysts , 1995 .

[33]  Ralf Schmidt,et al.  Composites of micro- and mesoporous materials: simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach , 1999 .

[34]  R. Prins,et al.  Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with SiCl4 by 1H, 29Si and 27Al MAS NMR , 2000 .

[35]  Mark E. Davis,et al.  High resolution, quasi-equilibrium sorption studies of molecular sieves , 1990 .

[36]  K. Sing,et al.  Adsorption by Powders and Porous Solids: Principles, Methodology and Applications , 1998 .

[37]  G. Attard,et al.  ORDERED MESOPOROUS SILICAS PREPARED FROM BOTH MICELLAR SOLUTIONS AND LIQUID CRYSTAL PHASES , 2001 .

[38]  R. Denoyel,et al.  Thermal Methods in the Synthesis of New Ordered Mesoporous Adsorbents , 1999 .

[39]  S. Bhatia,et al.  Adsorption in mesopores: a molecular-continuum model with application to MCM-41 , 1998 .

[40]  A. Neimark,et al.  Pore Size Analysis of MCM-41 Type Adsorbents by Means of Nitrogen and Argon Adsorption. , 1998, Journal of colloid and interface science.

[41]  T. Okuhara,et al.  Micropore size distribution by argon porosimetry for cesium hydrogen salts of 12-tungstophosphoric acid , 1998 .

[42]  M. Ogura,et al.  Formation of uniform mesopores in ZSM-5 zeolite through treatment in alkaline solution , 2000 .

[43]  F. Kapteijn,et al.  Superior performance of ex-framework FeZSM-5 in direct N2O decomposition in tail-gases from nitric acid plants. , 2001 .

[44]  J. Patarin,et al.  Adsorption by MFI-type zeolites examined by isothermal microcalorimetry and neutron diffraction. 2. Nitrogen and carbon monoxide , 1993 .

[45]  L. Peffer,et al.  Comments on “Vanadium- and chromium-containing mesoporous MCM-41 molecular sieves with hierarchical structure” [Micropor. Mesopor. Mater. 43 (2001) 227–236] , 2002 .

[46]  A. Sayari Catalysis by Crystalline Mesoporous Molecular Sieves , 1996 .

[47]  G. Poncelet,et al.  Comparative Vapor Phase Synthesis of ETBE from Ethanol and Isobutene over Different Acid Zeolites , 2001 .

[48]  R. T. Yang,et al.  Corrected Horvath-Kawazoe Equations for ´ Pore-Size Distribution , 2000 .

[49]  W. Steele,et al.  Simulation studies of sorption in model cylindrical micropores , 1998 .

[50]  Huanting Wang,et al.  High-surface-area zeolitic silica with mesoporosity , 2001 .

[51]  G. Gavalas,et al.  Surface Seeding in ZSM-5 Membrane Preparation , 1998 .

[52]  S. Lowell,et al.  Powder surface area and porosity , 1984 .

[53]  D. Do,et al.  Adsorption in slit-like pores of activated carbons: Improvement of the Horvath and Kawazoe method , 2002 .

[54]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[55]  A. Neimark,et al.  Characterization of Micro- and Mesoporosity in SBA-15 Materials from Adsorption Data by the NLDFT Method , 2001 .

[56]  J. C. Jansen,et al.  Synthesis, characterization and catalytic testing of a 3-D mesoporous titanosilica, Ti–TUD-1 , 2001 .

[57]  K. Morishige,et al.  Capillary Critical Point of Argon, Nitrogen, Oxygen, Ethylene, and Carbon Dioxide in MCM-41 , 1997 .

[58]  M. Jaroniec,et al.  Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements , 1997 .

[59]  Douglas H. Everett,et al.  The lower closure point in adsorption hysteresis of the capillary condensation type , 1970 .

[60]  Alexander V. Neimark,et al.  Capillary condensation in MMS and pore structure characterization , 2001 .

[61]  L. Peffer,et al.  Formation of Uniform Mesopores in ZSM-5 Zeolite upon Alkaline Post-treatment? , 2002 .

[62]  A. Corma,et al.  Acidity and Stability of MCM-41 Crystalline Aluminosilicates , 1994 .

[63]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[64]  T. Pinnavaia,et al.  Steam-Stable Aluminosilicate Mesostructures Assembled from Zeolite Type Y Seeds , 2000 .

[65]  S. J. Gregg,et al.  Adsorption Surface Area and Porosity , 1967 .

[66]  R. Ryoo,et al.  Aluminum Impregnation into Mesoporous Silica Molecular Sieves for Catalytic Application to Friedel–Crafts Alkylation , 2000 .

[67]  A. F. Venero,et al.  Characterization of Zeolites by Gas Adsorption at Low Pressures , 1987 .

[68]  H. Zandbergen,et al.  Thermoporometry as a new tool in analyzing mesoporous MCM-41 materials , 1995 .

[69]  D. Cazorla-Amorós,et al.  CO2 As an Adsorptive To Characterize Carbon Molecular Sieves and Activated Carbons , 1998 .

[70]  Andrew G. Glen,et al.  APPL , 2001 .

[71]  R. Siegel Characterization of porous solids II: F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing and K.K. Unger, eds., Elsevier, Amsterdam, 1991, 782 pages, $243.00 , 1993 .

[72]  I. Arends,et al.  Physicochemical Characterization of Isomorphously Substituted FeZSM-5 during Activation , 2002 .

[73]  H. C. Foley,et al.  Argon porosimetry of selected molecular sieves: experiments and examination of the adapted Horvath-Kawazoe model , 1995 .

[74]  A. Neimark,et al.  Evaluation of Pore Structure Parameters of MCM-41 Catalyst Supports and Catalysts by Means of Nitrogen and Argon Adsorption , 1997 .

[75]  J. Moulijn,et al.  Gasoline conversion: reactivity towards cracking with equilibrated FCC and ZSM-5 catalysts , 2002 .

[76]  G. Colón,et al.  A novel preparation of high surface area TiO2 nanoparticles from alkoxide precursor and using active carbon as additive , 2002 .

[77]  D. Zhao,et al.  Evaluating Pore Sizes in Mesoporous Materials: A Simplified Standard Adsorption Method and a Simplified Broekhoff−de Boer Method , 1999 .

[78]  Roberts,et al.  High Resolution Solid-State NMR of Silicates and Zeolites , 2022 .

[79]  K. Morishige,et al.  Adsorption hysteresis and pore critical temperature in a single cylindrical pore , 1998 .

[80]  A. Neimark,et al.  Characterization of nanoporous materials from adsorption and desorption isotherms , 2001 .

[81]  N. Seaton Determination of the connectivity of porous solids from nitrogen sorption measurements , 1991 .

[82]  W. Ahn,et al.  Synthesis and characterization of tantalum silicalite molecular sieves with MFI structure , 1999 .

[83]  K. Okada,et al.  Preparation of Porous Silica from Mechanically Activated Kaolinite , 2001 .

[84]  S. Pratsinis,et al.  Synthesis of bimodally porous titania powders by hydrolysis of titanium tetraisopropoxide , 2000 .

[85]  P. Voort,et al.  Rationalization of the Synthesis of SBA-16: Controlling the Micro- and Mesoporosity , 2002 .

[86]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[87]  A. Neimark,et al.  Capillary Hysteresis in Nanopores: Theoretical and Experimental Studies of Nitrogen Adsorption on MCM-41 , 1995 .

[88]  J. P. Olivier,et al.  Characterization of MCM-41 Using Molecular Simulation: Heterogeneity Effects , 1997 .

[89]  L. M. Gandía,et al.  Main factors controlling the texture of zirconia and alumina pillared clays , 2000 .

[90]  E. W. Sheppard,et al.  Argon Sorption in ZSM-5 , 1993 .

[91]  M. Jaroniec,et al.  Characterization of microporous-mesoporous MCM-41 silicates prepared in the presence of octyltrimethylammonium bromide , 1997 .

[92]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[93]  H. J. Schoennagel,et al.  An automated, high precision unit for low‐pressure physisorption , 1991 .

[94]  M. LeVan,et al.  Adsorption, science and technology , 1989 .

[95]  S. Bhatia,et al.  Characterization of Pore Size Distributions of Mesoporous Materials from Adsorption Isotherms , 2000 .

[96]  E. Barrett,et al.  (CONTRIBUTION FROM THE MULTIPLE FELLOWSHIP OF BAUGH AND SONS COMPANY, MELLOX INSTITUTE) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms , 1951 .

[97]  Qinghong Zhang,et al.  Preparation of Mesoporous TiO2 Photocatalyst by Selective Dissolving of Titania–Silica Binary Oxides , 2001 .

[98]  P. Llewellyn,et al.  Effect of pore size on adsorbate condensation and hysteresis within a potential model adsorbent: M41S , 1994 .

[99]  Zaoli Zhang,et al.  Vanadium- and chromium-containing mesoporous MCM-41 molecular sieves with hierarchical structure , 2001 .

[100]  M. Ogura,et al.  Alkali-treatment technique — new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites , 2001 .

[101]  A. Neimark,et al.  Adsorption hysteresis in nanopores , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[102]  T. Pinnavaia,et al.  Steam-Stable MSU-S Aluminosilicate Mesostructures Assembled from Zeolite ZSM-5 and Zeolite Beta Seeds The partial support of this research by the National Science Foundation through CRG grant 99-03706 is gratefully acknowledged. , 2001, Angewandte Chemie.

[103]  D. Hyduke,et al.  The Horvath–Kawazoe method revisited , 2001 .

[104]  H. C. Foley,et al.  High-resolution nitrogen and argon adsorption on ZSM-5 zeolites: effects of cation exchange and SiAl ratio , 1995 .

[105]  A. Neimark,et al.  Unified Approach to Pore Size Characterization of Microporous Carbonaceous Materials from N2, Ar, and CO2 Adsorption Isotherms† , 2000 .

[106]  W. Maier,et al.  Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis , 1998 .

[107]  C. Lambert,et al.  Sol-gel preparation and thermal stability of Pd/γ-Al2O3 catalysts , 1999 .

[108]  F. Kapteijn,et al.  Zeolite coated structures for the acylation of aromatics , 2001 .

[109]  F. Kapteijn,et al.  NO-Assisted N2O Decomposition over Fe-Based Catalysts: Effects of Gas-Phase Composition and Catalyst Constitution , 2002 .

[110]  J. H. de Boer,et al.  Studies on pore systems in catalysts: V. The t method , 1965 .