Molecular beam epitaxy of HgCdTe

[1]  Jasprit Singh,et al.  Variation of Hg incorporation in molecular‐beam epitaxially grown HgCdTe structures due to growth front roughness and misoriented substrates: Role of kink sites , 1989 .

[2]  H. Zogg Strain relief in epitaxial fluoride buffer layers for semiconductor heteroepitaxy , 1986 .

[3]  Naoki Oda,et al.  Development of MBE-grown HgCdTe 64 x 64 FPA for long-wavelength IR detection , 1993, Optics & Photonics.

[4]  R. Zucca,et al.  p‐i‐n HgCdTe photodiodes grown by molecular beam epitaxy , 1991 .

[5]  C. Summers,et al.  Surface stoichiometry and reaction kinetics of molecular beam epitaxially grown (001) CdTe surfaces , 1986 .

[6]  Owen K. Wu Status of HgCdTe MBE technology for IRFPA , 1993, Optics & Photonics.

[7]  G. H. Westphal,et al.  In situ sensors for monitoring and control in molecular beam epitaxial growth of Hg1−xCdxTe , 1996 .

[8]  Sivalingam Sivananthan,et al.  Heteroepitaxy of CdTe on Si substrates in view of infrared and x-ray detection , 1996, Photonics West.

[9]  Thomas H. Myers,et al.  Dopant diffusion in HgCdTe grown by photon assisted molecular‐beam epitaxy , 1992 .

[10]  J. Mullin,et al.  The growth of high quality CdxHg1−xTe by MOVPE onto GaAs substrates , 1985 .

[11]  D. Rajavel,et al.  Molecular‐beam epitaxial growth of CdTe(112) on Si(112) substrates , 1995 .

[12]  D. E. Cooper,et al.  p‐type arsenic doping of CdTe and HgTe/CdTe superlattices grown by photoassisted and conventional molecular‐beam epitaxy , 1990 .

[13]  J. Reno,et al.  Relation between crystallographic orientation and the condensation coefficients of Hg, Cd, and Te during molecular-beam-epitaxial growth of Hg1−xCdxTe and CdTe , 1986 .

[14]  H. Zogg,et al.  Properties Of Epitaxial Cdte On Si(lll) With a (Ca,Ba)F 2 Buffer Layer , 1987 .

[15]  S. Sivananthan,et al.  Te-rich liquid phase epitaxial growth of HgCdTe on Si-based substrates , 1995 .

[16]  John A. Roth,et al.  Direct molecular‐beam epitaxial growth of ZnTe(100) and CdZnTe(100)/ZnTe(100) on Si(100) substrates , 1993 .

[17]  E. A. Patten,et al.  Chemical doping of HgCdTe by molecular‐beam epitaxy , 1990 .

[18]  G. Patriarche,et al.  Imperfections in II–VI semiconductor layers epitaxially grown by organometallic chemical vapour deposition on GaAs , 1993 .

[19]  Wu,et al.  Far-infrared magneto-optical study of holes and electrons in zero-band-gap HgTe/Cd0.85Hg0.15Te superlattices. , 1990, Physical review. B, Condensed matter.

[20]  T. Schimert,et al.  Metalorganic chemical vapor deposition of HgCdTe for photodiode applications , 1995 .

[21]  C. Burrus,et al.  HgCdTe all‐epitaxial semiconductor/semimetal Schottky photodiode , 1990 .

[22]  A. Syllaios,et al.  Minority carrier lifetime in mercury cadmium telluride , 1993 .

[23]  H. Zogg,et al.  Molecular beam epitaxial growth of high structural perfection CdTe on Si using a (Ca,Ba)F2 buffer layer , 1986 .

[24]  F. Bassani,et al.  Surface reconstructions of (001) CdTe and their role in the dynamics of evaporation and molecular‐beam epitaxy growth , 1994 .

[25]  A. Ksendzov,et al.  Photoreflectance study of the temperature dependence of the E1 transition in (100) CdTe , 1989 .

[26]  R. Kolbas,et al.  Field‐effect transistors in Hg1−xCdxTe grown by photoassisted molecular beam epitaxy , 1990 .

[27]  E. A. Patten,et al.  Light hole interband transitions in HgTe‐HgCdTe superlattices , 1988 .

[28]  E. Gertner,et al.  p‐type doping of metalorganic chemical vapor deposition‐grown HgCdTe by arsenic and antimony , 1992 .

[29]  P. Capper,et al.  Arsenic diffusion effects in CdxHg1-xTe layers grown by metal-organic vapour phase epitaxy , 1989 .

[30]  Scott M. Johnson,et al.  MBE-grown HgCdTe heterojunction structures for IR FPAs , 1996, Photonics West.

[31]  William E. Tennant,et al.  Molecular beam epitaxy (MBE) HgCdTe flexible growth technology for the manufacturing of infrared photovoltaic detectors , 1994, Defense, Security, and Sensing.

[32]  M. Yu,et al.  Infrared photoconductor fabricated with a molecular beam epitaxially grown CdTe/HgCdTe heterostructure , 1991 .

[33]  M. Proctor,et al.  Heteroepitaxy of CdTe(100) on Si(100) using BaF2−CaF2(100) buffer layers , 1991 .

[34]  Y. Nishijima,et al.  Polarity of a (111)‐oriented CdTe layer grown on a (100) Si substrate , 1995 .

[35]  Sivalingam Sivananthan,et al.  Recent progress in the doping of MBE HgCdTe , 1995, Optics & Photonics.

[36]  S. Sivananthan,et al.  Molecular beam epitaxial growth of CdTe and HgCdTe on Si (100) , 1989 .

[37]  R. Zucca,et al.  High‐power diode‐laser‐pumped midwave infrared HgCdTe/CdZnTe quantum‐well lasers , 1994 .

[38]  S. Sivananthan,et al.  Heteroepitaxy of CdTe on GaAs and silicon substrates , 1993 .

[39]  F. C. Case,et al.  Independently accessed back-to-back HgCdTe photodiodes: A new dual-band infrared detector , 1995 .

[40]  David J. Smith,et al.  Microstructure of heteroepitaxial CdTe grown on misoriented Si(001) substrates , 1995 .

[41]  R. Sporken,et al.  Molecular beam epitaxial growth of CdTe on 5‐in.‐diam Si (100) , 1990 .

[42]  H. Zogg,et al.  Molecular beam epitaxial growth of (100) oriented CdTe on Si (100) using BaF2-CaF2 as a buffer , 1990 .

[43]  C. Becker,et al.  Molecular beam epitaxial growth of (100) Hg0.8Cd0.2Te on Cd0.96Zn0.04Te , 1993 .

[44]  R Balcerak,et al.  Infrared material requirements for the next generation of systems , 1991 .

[45]  Owen K. Wu,et al.  Growth and properties of In- and As-doped HgCdTe by MBE , 1993 .

[46]  L. Golonka,et al.  Partial Pressures over HgTe ‐ CdTe Solid Solutions II . Results for , 1981 .

[47]  N. El-Masry,et al.  Large area depositon of Cd1-xZnxTe on GaAs and Si substrates by metalorganic chemical vapor deposition , 1995 .

[48]  E. A. Patten,et al.  MBE growth and characterization of Hg-based superlattices , 1989 .

[49]  W. Scott,et al.  Anomalous Electrical Properties of p‐Type Hg1−xCdxTe , 1971 .

[50]  O. Wu Current State and Future Challenge in HgCdTe MBE Technology , 1994 .

[51]  S. Sivananthan,et al.  The doping of mercury cadmium telluride grown by molecular‐beam epitaxy , 1988 .

[52]  J. Gailliard A thermodynamical model of molecular beam epitaxy, application to the growth of II VI semiconductors , 1987 .

[53]  A. Million,et al.  Molecular beam epitaxy of II–VI compounds: CdxHg1−xTe , 1981 .

[54]  B. Joyce,et al.  Current understanding and applications of the RHEED intensity oscillation technique , 1987 .

[55]  P. Gentile,et al.  Application of the RHEED oscillation technique to the growth of II–VI compounds: CdTe, HgTe and their related alloys , 1991 .

[56]  Rajesh D. Rajavel,et al.  Status of MBE technology for the flexible manufacturing of HgCdTe focal plane arrays , 1996 .

[57]  Scott M. Johnson,et al.  Direct MBE growth of CdZnTe on Si(100) and Si(112) substrates for large-area HgCdTe IRFPAs , 1993, Optics & Photonics.

[58]  N. Ōtsuka,et al.  Microstructural defect reduction in HgCdTe grown by photoassisted molecular‐beam epitaxy , 1990 .

[59]  H. F. Schaake,et al.  Kinetics of molecular‐beam epitaxial HgCdTe growth , 1988 .

[60]  Charles A. Cockrum HgCdTe material properties and their influence on IR FPA performance , 1996, Photonics West.

[61]  H. F. Schaake,et al.  Etch pit characterization of CdTe and CdZnTe substrates for use in mercury cadmium telluride epitaxy , 1995 .

[62]  Majid Zandian,et al.  Bias‐switchable dual‐band HgCdTe infrared photodetector , 1992 .

[63]  R. F. Risser,et al.  MOCVD grown CdZn Te/GaAs/Si substrates for large-area HgCdTe IRFPAs , 1993 .

[64]  Majid Zandian,et al.  Planar p‐on‐n HgCdTe heterostructure photovoltaic detectors , 1993 .

[65]  R. Zucca,et al.  HgCdTe double heterostructure injection laser grown by molecular beam epitaxy , 1991 .

[66]  S. Ghandhi,et al.  Indium doping of n‐type HgCdTe layers grown by organometallic vapor phase epitaxy , 1990 .

[67]  Christopher J. Summers,et al.  Molecular beam epitaxial growth and characterization of ZnTe and CdTe on (001) GaAs , 1988 .

[68]  David J. Smith,et al.  Growth of high quality CdTe on Si substrates by molecular beam epitaxy , 1996 .

[69]  M. Zandian,et al.  Dislocation density reduction by thermal annealing of HgCdTe epilayers grown by molecular beam epitaxy on GaAs substrates , 2008 .

[70]  Naoki Oda,et al.  Hybrid 256 x 256 LWIR FPA using MBE-grown HgCdTe on GaAs , 1995, Optics & Photonics.

[71]  R. Singh,et al.  Excimer laser-assisted planarization of thick diamond films , 1996 .

[72]  Scott M. Johnson,et al.  Direct MBE growth of HgCdTe(112) IR detector structures on Si(112) substrates , 1995, Optics & Photonics.

[73]  J. S. Blakemore Semiconductor Statistics , 1962 .

[74]  J. Bablet,et al.  HgCdTe double heterostructure for infrared injection laser , 1993 .

[75]  R. Zucca,et al.  HgCdTe infrared diode lasers grown by MBE , 1993 .

[76]  J. Schulman,et al.  HgTe/HgCdTe superlattices: Growth, electrical and optical properties , 1990 .

[77]  S. J. Tighe,et al.  State of the art of Hg-melt LPE HgCdTe at Santa Barbara Research Center , 1992, Optics & Photonics.

[78]  P. W. Norton,et al.  CdZnTe substrate impurities and their effects on liquid phase epitaxy HgCdTe , 1995 .

[79]  Bonnie A. Baumgratz,et al.  Direct growth of CdZnTe/Si substrates for large-area HgCdTe infrared focal plane arrays , 1995 .

[80]  H. Zogg,et al.  GROWTH OF HETEROEPITAXIAL CdTe LAYERS ON REUSABLE Si SUBSTRATES AND A LIFT-OFF TECHNIQUE FOR THIN FILM SOLAR CELL FABRICATION , 1992 .

[81]  N. Ōtsuka,et al.  Modulation-doped HgCdTe quantum well structures and superlattices grown by photoassisted molecular beam epitaxy , 1990 .

[82]  B. Feldman,et al.  Impurity doping of HgTe–CdTe superlattices during growth by molecular‐beam epitaxy , 1989 .

[83]  S. Sivananthan,et al.  Structure of CdTe(111)B grown by MBE on misoriented Si(001) , 1993 .

[84]  Lester J. Kozlowski,et al.  Uniform low defect density molecular beam epitaxial HgCdTe , 1996 .

[85]  R. S. List Electrical effects of dislocations and other crystallographic defects in Hg0.78Cd0.22Te n-on-p photodiodes , 1993 .

[86]  Wu,et al.  Far-infrared determination of effective mass and valence-band offset in the HgTe/CdTe superlattice. , 1989, Physical review. B, Condensed matter.

[87]  Rajesh D. Rajavel,et al.  Heteroepitaxy of HgCdTe(112) infrared detector structures on Si(112) substrates by molecular-beam epitaxy , 1996 .

[88]  J. Rosbeck,et al.  Effect of dislocations on the electrical and optical properties of long‐wavelength infrared HgCdTe photovoltaic detectors , 1992 .

[89]  Jerry R. Meyer,et al.  Far-infrared magneto-optical study of holes and electrons in zero-gap HgTe/Cd0.85Hg0.15Te superlattices , 1990 .

[90]  N. Ōtsuka,et al.  Suppression of twin formation in CdTe(111)B epilayers grown by molecular beam epitaxy on misoriented Si(001) , 1995 .

[91]  Carlos A. Castro Review of key trends in HgCdTe materials for IR focal plane arrays , 1993, Optics & Photonics.

[92]  S. Sivananthan,et al.  Current status of direct growth of CdTe and HgCdTe on silicon by molecular‐beam epitaxy , 1992 .

[93]  Joel N. Schulman,et al.  The CdTe/HgTe superlattice: Proposal for a new infrared material , 1979 .

[94]  C. A. Cockrum,et al.  HgCdTe molecular beam epitaxy technology: A focus on material properties , 1995 .

[95]  S. Perkowitz,et al.  Raman And Resonant Raman Scattering From The HgTe-CdTe Superlattice , 1989, Photonics West - Lasers and Applications in Science and Engineering.

[96]  G. S. Kamath,et al.  CdZnTe on Si(001) and Si(112): Direct MBE Growth for Large‐Area HgCdTe Infrared Focal‐Plane Array Applications , 1994 .

[97]  Antoni Rogalski,et al.  Intrinsic infrared detectors , 1988 .

[98]  Yasuhiro Shiraki,et al.  Low Temperature Surface Cleaning of Silicon and Its Application to Silicon MBE , 1986 .

[99]  Tse Tung,et al.  Infinite-melt vertical liquid-phase epitaxy of HgCdTe from Hg solution: Status and prospects , 1988 .

[100]  T. Polgreen,et al.  Dislocations and electrical characteristics of HgCdTe , 1988 .

[101]  C. Becker,et al.  Infrared photoconductor fabricated with HgTe/CdTe superlattice grown by molecular beam epitaxy , 1993 .