Combinatorial complexes, Bruhat intervals and reflection distances

The various results presented in this thesis are naturallysubdivided into three different topics, namely combinatorialcomplexes, Bruhat intervals and expected reflection distances.Each topic is mad ...

[1]  Vineet Bafna,et al.  Genome Rearrangements and Sorting by Reversals , 1996, SIAM J. Comput..

[2]  Tao Liu,et al.  Inversion Medians Outperform Breakpoint Medians in Phylogeny Reconstruction from Gene-Order Data , 2002, WABI.

[3]  Adriano M. Garsia,et al.  Group actions on Stanley-Reisner rings and invariants of permutation groups☆ , 1984 .

[4]  G. C. Shephard,et al.  Finite Unitary Reflection Groups , 1954, Canadian Journal of Mathematics.

[5]  Vinay V. Deodhar A note on subgroups generated by reflections in Coxeter groups , 1989 .

[6]  Matthew Dyer,et al.  Reflection subgroups of Coxeter systems , 1990 .

[7]  P. Pevzner,et al.  Genome-scale evolution: reconstructing gene orders in the ancestral species. , 2002, Genome research.

[8]  Axel Hultman,et al.  Bruhat intervals of length 4 in Weyl groups , 2003, J. Comb. Theory, Ser. A.

[9]  Bruce E. Sagan,et al.  Subspace Arrangements of Type Bn and Dn , 1996 .

[10]  M. Dyer,et al.  On the "Bruhat graph" of a Coxeter system , 1991 .

[11]  Anders Björner,et al.  Posets, Regular CW Complexes and Bruhat Order , 1984, Eur. J. Comb..

[12]  Svante Linusson,et al.  Complexes of t-Colorable Graphs , 2003, SIAM J. Discret. Math..

[13]  G. C. Shephard Regular Complex Polytopes , 1952 .

[14]  Paul H. Edelman,et al.  Hyperplane arrangements with a lattice of regions , 1990, Discret. Comput. Geom..

[15]  Thomas Zaslavsky Signed graphs: To: T. Zaslausky, Discrete Appl. Math 4 (1982) 47-74 , 1983, Discret. Appl. Math..

[16]  Xun Dong Topology of bounded-degree graph complexes , 2003 .

[17]  Svante Linusson,et al.  COMPLEXES OF NOT i-CONNECTED GRAPHS , 1997, math/9705219.

[18]  M. Goresky,et al.  Stratified Morse theory , 1988 .

[19]  Richard P. Stanley,et al.  f-vectors and h-vectors of simplicial posets , 1991 .

[20]  Michelle L. Wachs,et al.  Bruhat Order of Coxeter Groups and Shellability , 1982 .

[21]  Axel Hultman,et al.  Expected Reflection Distance in G(r, 1, n) after a Fixed Number of Reflections , 2005 .

[22]  Axel Hultman,et al.  Directed Subgraph Complexes , 2004, Electron. J. Comb..

[23]  Dmitry N. Kozlov,et al.  Complexes of Directed Trees , 1999, J. Comb. Theory A.

[24]  R. Forman Morse Theory for Cell Complexes , 1998 .

[25]  Manoj K. Chari On discrete Morse functions and combinatorial decompositions , 2000, Discret. Math..

[26]  Thomas A. Dowling,et al.  A class of geometric lattices based on finite groups , 1973 .

[27]  I. G. MacDonald,et al.  A new class of symmetric functions. , 1988 .

[28]  Michelle L. Wachs,et al.  Shellable nonpure complexes and posets. II , 1996 .

[29]  J. Humphreys Reflection groups and coxeter groups , 1990 .

[30]  Richard P. Stanley,et al.  Quotients of coxeter complexes and p-partitions , 1990 .

[31]  Pavel A. Pevzner,et al.  Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals , 1995, JACM.

[32]  Rational homology of spaces of complex monic polynomials with multiple roots , 2001, math/0111167.

[33]  Art M. Duval Free Resolutions of Simplicial Posets , 1997 .

[34]  J. Jantzen Moduln mit einem höchsten Gewicht , 1979 .

[35]  A. Garsia,et al.  A graded representation model for Macdonald's polynomials. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[36]  D. Quillen,et al.  Homotopy properties of the poset of nontrivial p-subgroups of a group , 1978 .

[37]  Tandy J. Warnow,et al.  Estimating true evolutionary distances between genomes , 2001, STOC '01.

[38]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[39]  Axel Hultman,et al.  Quotient Complexes and Lexicographic Shellability , 2002 .

[40]  A. Björner Topological methods , 1996 .

[41]  Volkmar Welker,et al.  Complexes of Directed Graphs , 1999, SIAM J. Discret. Math..

[42]  D. Kozlov General lexicographic shellability and orbit arrangements , 1997 .

[43]  Jakob Jonsson On the topology of simplicial complexes related to 3-connected and Hamiltonian graphs , 2003, J. Comb. Theory, Ser. A.

[44]  Thomas Zaslavsky,et al.  ON THE INTERPRETATION OF WHITNEY NUMBERS THROUGH ARRANGEMENTS OF HYPERPLANES, ZONOTOPES, NON-RADON PARTITIONS, AND ORIENTATIONS OF GRAPHS , 1983 .

[45]  Alberto Caprara,et al.  On the Tightness of the Alternating-Cycle Lower Bound for Sorting by Reversals , 1999, J. Comb. Optim..

[46]  Axel Hultman,et al.  Estimating the expected reversal distance after a fixed number of reversals , 2004, Adv. Appl. Math..

[47]  Noboru Ito The spectrum of a conjugacy class graph of a finite group , 1984 .

[48]  Mark Haiman,et al.  Hilbert schemes, polygraphs and the Macdonald positivity conjecture , 2000, math/0010246.

[49]  V. Turchin Homologies of complexes of doubly connected graphs , 1997 .

[50]  Dmitry N. Kozlov,et al.  Collapsibility of Δ(Π_{})/_{} and some related CW complexes , 1999 .

[51]  Bruce E. Sagan,et al.  Sinks in Acyclic Orientations of Graphs , 2000, J. Comb. Theory, Ser. B.

[52]  Mark Haiman,et al.  Macdonald Polynomials and Geometry , 1999 .

[53]  D. Kozlov COLLAPSIBILITY OF ∆(Πn)/Sn AND SOME RELATED CW COMPLEXES , 1999 .

[54]  Günter M. Ziegler,et al.  Homotopy types of subspace arrangements via diagrams of spaces , 1993 .

[55]  A. Björner Shellable and Cohen-Macaulay partially ordered sets , 1980 .

[56]  P. Hersh Lexicographic Shellability for Balanced Complexes , 2003, math/0311262.

[57]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[58]  Niklas Eriksen,et al.  Approximating the Expected Number of Inversions Given the Number of Breakpoints , 2002, WABI.

[59]  Jürgen Reinhold,et al.  Intervals in lattices of quasiorders , 1995 .