A criterion to determine residual coordinates of $\mathbb{A}^2$-fibrations

This article discusses a criterion to determine residual variables of an $\mathbb{A}^2$-fibration over a Noetherian domain containing $\mathbb{Q}$.

[1]  Swapnil A. Lokhande,et al.  Rank and rigidity of locally nilpotent derivations of affine fibrations , 2021, Communications in Algebra.

[2]  M'hammed El Kahoui,et al.  Residual coordinates over one-dimensional rings , 2021 .

[3]  Prosenjit Das,et al.  Structure of A2-fibrations having fixed point free locally nilpotent derivations , 2021 .

[4]  Einzelwerken Muster,et al.  Invent , 2021, Encyclopedic Dictionary of Archaeology.

[5]  A. K. Dutta,et al.  Some results on retracts of polynomial rings , 2019, 1910.11023.

[6]  A. Lahiri A note on partial coordinate system in a polynomial ring , 2018, Communications in Algebra.

[7]  M. E. Kahoui,et al.  A triviality criterion for A2-fibrations over a ring containing Q , 2016 .

[8]  P. Das On cancellation of variables of the form bTn−a over affine normal domains , 2015, 2002.02129.

[9]  A. K. Dutta,et al.  A Note on Residual Variables of an Affine Fibration , 2014, 2002.02128.

[10]  M. E. Kahoui On residual coordinates and stable coordinates of R[3] , 2013 .

[11]  M'hammed El Kahoui On residual coordinates and stable coordinates of R[3] , 2013 .

[12]  S. Maubach,et al.  Derivations having divergence zero onR[X,Y] , 2001 .

[13]  G. Freudenburg,et al.  Locally Nilpotent Derivations over a UFD and an Application to Rank Two Locally Nilpotent Derivations ofk[X1,…,Xn]☆ , 1998 .

[14]  A. K. Dutta,et al.  Kernel of locally nilpotent $R$-derivations of $R[X,Y]$ , 1997 .

[15]  S. M. Bhatwadekar,et al.  Structure of A2-fibrations over one-dimensional noetherian domains , 1997 .

[16]  M. Ploščica,et al.  Projective algebras , 1994 .

[17]  A. K. Dutta,et al.  On residual variables and stably polynomial algebras , 1993 .

[18]  T. Asanuma Polynomial fibre rings of algebras over noetherian rings , 1987 .

[19]  A. Sathaye Polynomial ring in two variables over a D.V.R.: A criterion , 1983 .

[20]  C. Greither Seminormality, projective algebras, and invertible algebras , 1981 .

[21]  M. Miyanishi,et al.  Affine surfaces containing cylinderlike open sets , 1980 .

[22]  A. Sathaye,et al.  On Finding and Cancelling Variables in k(X, Y, Z) , 1979 .

[23]  T. Fujita On Zariski problem , 1979 .

[24]  E. Hamann On the R-invariance of R[X]☆ , 1975 .

[25]  Taylor Francis Online Communications in algebra , 1974 .

[26]  S. Abhyankar,et al.  On the uniqueness of the coefficient ring in a polynomial ring , 1972 .

[27]  M. Hochster Nonuniqueness of coefficient rings in a polynomial ring , 1972 .

[28]  T. Hall,et al.  Journal of Algebra , 1964, Nature.