Interior penalty method for the indefinite time-harmonic Maxwell equations
暂无分享,去创建一个
Ilaria Perugia | Paul Houston | Dominik Schötzau | Anna Schneebeli | D. Schötzau | P. Houston | I. Perugia | A. Schneebeli
[1] D. Schötzau,et al. hp -DGFEM for Maxwell’s equations , 2003 .
[2] D. Schötzau,et al. Stabilized interior penalty methods for the time-harmonic Maxwell equations , 2002 .
[3] Peter Monk,et al. A finite element method for approximating the time-harmonic Maxwell equations , 1992 .
[4] Ronald H. W. Hoppe,et al. Finite element methods for Maxwell's equations , 2005, Math. Comput..
[5] P. Monk. A Simple Proof of Convergence for an Edge Element Discretization of Maxwell’s Equations , 2003 .
[6] Ilaria Perugia,et al. Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator , 2005 .
[7] Daniele Boffi,et al. EDGE FINITE ELEMENTS FOR THE APPROXIMATION OF MAXWELL RESOLVENT OPERATOR , 2002 .
[8] J. Hesthaven,et al. High–order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[9] F. Brezzi,et al. Finite dimensional approximation of nonlinear problems , 1981 .
[10] Alberto Valli,et al. An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations , 1999, Math. Comput..
[11] Mark Ainsworth,et al. Hierarchic hp-edge element families for Maxwell's equations on hybrid quadrilateral/triangular meshes , 2001 .
[12] Ilaria Perugia,et al. Mixed discontinuous Galerkin approximation of the Maxwell operator: The indefinite case , 2005 .
[13] Ilaria Perugia,et al. Mixed Discontinuous Galerkin Approximation of the Maxwell Operator: Non-Stabilized Formulation , 2005, J. Sci. Comput..
[14] Ohannes A. Karakashian,et al. A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..
[15] L. Demkowicz,et al. hp-adaptive finite elements in electromagnetics , 1999 .
[16] R. Hiptmair. Finite elements in computational electromagnetism , 2002, Acta Numerica.
[17] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[18] Gianni Gilardi,et al. Magnetostatic and Electrostatic Problems in Inhomogeneous Anisotropic Media with Irregular Boundary and Mixed Boundary Conditions , 1997 .
[19] Ilaria Perugia,et al. The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations , 2003, Math. Comput..
[20] L. Demkowicz,et al. Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements , 1998 .
[21] Ralf Hiptmair,et al. Boundary Element Methods for Maxwell Transmission Problems in Lipschitz Domains , 2003, Numerische Mathematik.
[22] J. Nédélec. A new family of mixed finite elements in ℝ3 , 1986 .
[23] A. H. Schatz,et al. An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .
[24] V. Girault,et al. Vector potentials in three-dimensional non-smooth domains , 1998 .