Interior penalty method for the indefinite time-harmonic Maxwell equations

SummaryIn this paper, we introduce and analyze the interior penalty discontinuous Galerkin method for the numerical discretization of the indefinite time-harmonic Maxwell equations in the high-frequency regime. Based on suitable duality arguments, we derive a-priori error bounds in the energy norm and the L2-norm. In particular, the error in the energy norm is shown to converge with the optimal order (hmin{s,ℓ}) with respect to the mesh size h, the polynomial degree ℓ, and the regularity exponent s of the analytical solution. Under additional regularity assumptions, the L2-error is shown to converge with the optimal order (hℓ+1). The theoretical results are confirmed in a series of numerical experiments.

[1]  D. Schötzau,et al.  hp -DGFEM for Maxwell’s equations , 2003 .

[2]  D. Schötzau,et al.  Stabilized interior penalty methods for the time-harmonic Maxwell equations , 2002 .

[3]  Peter Monk,et al.  A finite element method for approximating the time-harmonic Maxwell equations , 1992 .

[4]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[5]  P. Monk A Simple Proof of Convergence for an Edge Element Discretization of Maxwell’s Equations , 2003 .

[6]  Ilaria Perugia,et al.  Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator , 2005 .

[7]  Daniele Boffi,et al.  EDGE FINITE ELEMENTS FOR THE APPROXIMATION OF MAXWELL RESOLVENT OPERATOR , 2002 .

[8]  J. Hesthaven,et al.  High–order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[10]  Alberto Valli,et al.  An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations , 1999, Math. Comput..

[11]  Mark Ainsworth,et al.  Hierarchic hp-edge element families for Maxwell's equations on hybrid quadrilateral/triangular meshes , 2001 .

[12]  Ilaria Perugia,et al.  Mixed discontinuous Galerkin approximation of the Maxwell operator: The indefinite case , 2005 .

[13]  Ilaria Perugia,et al.  Mixed Discontinuous Galerkin Approximation of the Maxwell Operator: Non-Stabilized Formulation , 2005, J. Sci. Comput..

[14]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[15]  L. Demkowicz,et al.  hp-adaptive finite elements in electromagnetics , 1999 .

[16]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[17]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[18]  Gianni Gilardi,et al.  Magnetostatic and Electrostatic Problems in Inhomogeneous Anisotropic Media with Irregular Boundary and Mixed Boundary Conditions , 1997 .

[19]  Ilaria Perugia,et al.  The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations , 2003, Math. Comput..

[20]  L. Demkowicz,et al.  Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements , 1998 .

[21]  Ralf Hiptmair,et al.  Boundary Element Methods for Maxwell Transmission Problems in Lipschitz Domains , 2003, Numerische Mathematik.

[22]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[23]  A. H. Schatz,et al.  An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .

[24]  V. Girault,et al.  Vector potentials in three-dimensional non-smooth domains , 1998 .