Biomimetic tissue-engineered anterior cruciate ligament replacement

There are >200,000 anterior cruciate ligament (ACL) ruptures each year in the United States, and, due to the poor healing properties of the ACL, surgical reconstruction with autograft or allograft tissue is the current treatment of these injuries. To regenerate the ACL, the ideal matrix should be biodegradable, porous, and exhibit sufficient mechanical strength to allow formation of neoligament tissue. Researchers have developed ACL scaffolds with collagen fibers, silk, biodegradable polymers, and composites with limited success. Our group has developed a biomimetic ligament replacement by using 3D braiding technology. In this preliminary in vivo rabbit model study for ACL reconstruction, the histological and mechanical evaluation demonstrated excellent healing and regeneration with our cell-seeded, tissue-engineered ligament replacement.

[1]  L. Yahia Ligaments and Ligamentoplasties , 2011, Springer Berlin Heidelberg.

[2]  A. Tria,et al.  Anterior cruciate ligament reconstruction using a composite collagenous prosthesis , 1992 .

[3]  Ivan Martin,et al.  Silk matrix for tissue engineered anterior cruciate ligaments. , 2002, Biomaterials.

[4]  R. Guidoin,et al.  Analysis of retrieved polymer fiber based replacements for the ACL. , 2000, Biomaterials.

[5]  J. Black,et al.  Biological performance of materials : fundamentals of biocompatibility , 1999 .

[6]  R. Major Biomechanics of the Musculo-Skeletal System , 1994 .

[7]  R. Ian Fresh,et al.  Culture of animal cells : a manual of basic technique , 2005 .

[8]  A A Amis,et al.  Anterior cruciate ligament replacement. Biocompatibility and biomechanics of polyester and carbon fibre in rabbits. , 1988, The Journal of bone and joint surgery. British volume.

[9]  S. Woo,et al.  Ultrastructural morphometry of anterior cruciate and medial collateral ligaments: An experimental study in rabbits , 1992, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[10]  J. A. Cooper,et al.  Evaluation of the anterior cruciate ligament, medial collateral ligament, achilles tendon and patellar tendon as cell sources for tissue-engineered ligament. , 2006, Biomaterials.

[11]  W. Akeson,et al.  Characterization of the intrinsic properties of the anterior cruciate and medial collateral ligament cells: An in vitro cell culture study , 1992, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[12]  K Kaneda,et al.  Biomechanical and histological changes in the patellar tendon after in situ freezing An experimental study in rabbits. , 1996, Clinical biomechanics.

[13]  Preliminary comparison of the rupture of human and rabbit anterior cruciate ligaments. , 2001, Clinical biomechanics.

[14]  Joseph W Freeman,et al.  Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. , 2005, Biomaterials.

[15]  R. Warren,et al.  Replacement of the anterior cruciate ligament using a patellar tendon allograft. An experimental study. , 1986, The Journal of bone and joint surgery. American volume.

[16]  D. Frank Culture of Animal Cells: A Manual of Basic Technique , 1984, The Yale Journal of Biology and Medicine.

[17]  Jonathan Black,et al.  Handbook of Biomaterial Properties , 1998, Springer US.

[18]  S L Woo,et al.  Biology and biomechanics of the anterior cruciate ligament. , 1993, Clinics in sports medicine.

[19]  D. Bozentka Biological performance of materials: fundamentals of biocompatibility , 1993 .

[20]  B. Nigg,et al.  Biomechanics of the musculo-skeletal system , 1995 .

[21]  P. Törmälä,et al.  Mechanical properties of biodegradable ligament augmentation device of poly(L-lactide) in vitro and in vivo. , 1992, Biomaterials.

[22]  R. Greco Implantation biology : the host response and biomedical devices , 1994 .

[23]  J. A. Cooper,et al.  Tissue engineering: orthopedic applications. , 1999, Annual review of biomedical engineering.

[24]  S L Woo,et al.  The mechanical properties of skeletally mature rabbit anterior cruciate ligament and patellar tendon over a range of strain rates , 1993, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[25]  F. J. Shelley,et al.  Healing of the rabbit medial collateral ligament following an o'donoghue triad injury: Effects of anterior cruciate ligament reconstruction , 1994, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[26]  S. Woo,et al.  Use of patellar tendon autograft for anterior cruciate ligament reconstruction in the rabbit: A long‐term histologic and biomechanical study , 1989, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[27]  Margareta Nordin,et al.  Basic Biomechanics of the Musculoskeletal Systm , 1989 .

[28]  E. B. Prophet,et al.  Laboratory methods in histotechnology , 1992 .

[29]  Joseph W Freeman,et al.  Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. , 2005, Biomaterials.

[30]  J. D. Withrow,et al.  Biomechanics of Knee Ligaments , 1993, The American journal of sports medicine.

[31]  P. Törmälä,et al.  Mechanical properties of biodegradable poly-l-lactide ligament augmentation device in experimental anterior cruciate ligament reconstruction , 2004, Archives of Orthopaedic and Trauma Surgery.

[32]  J. Lopes,et al.  Time of remodelling of the patella tendon graft in anterior cruciate ligament surgery: an histological and immunohistochemical study in a rabbit model , 1998 .

[33]  F. Noyes,et al.  Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. , 1984, The Journal of bone and joint surgery. American volume.

[34]  Donald L. Wise,et al.  Encyclopedic Handbook of Biomaterials and Bioengineering , 1995 .

[35]  H. Ranu,et al.  Therapeutic Exercise: Foundations and Techniques. 2nd Edn , 1992 .