Chemical heterogeneity on Mercury's surface revealed by the MESSENGER X-Ray Spectrometer

[1] We present the analysis of 205 spatially resolved measurements of the surface composition of Mercury from MESSENGER’s X-Ray Spectrometer. The surface footprints of these measurements are categorized according to geological terrain. Northern smooth plains deposits and the plains interior to the Caloris basin differ compositionally from older terrain on Mercury. The older terrain generally has higher Mg/Si, S/Si, and Ca/Si ratios, and a lower Al/Si ratio than the smooth plains. Mercury’s surface mineralogy is likely dominated by high-Mg mafic minerals (e.g., enstatite), plagioclase feldspar, and lesser amounts of Ca, Mg, and/or Fe sulfides (e.g., oldhamite). The compositional difference between the volcanic smooth plains and the older terrain reflects different abundances of these minerals and points to the crystallization of the smooth plains from a more chemically evolved magma source. High-degree partial melts of enstatite chondrite material provide a generally good compositional and mineralogical match for much of the surface of Mercury. An exception is Fe, for which the low surface abundance on Mercury is still higher than that of melts from enstatite chondrites and may indicate an exogenous contribution from meteoroid impacts.

[1]  Larry G. Evans,et al.  Variations in the abundances of potassium and thorium on the surface of Mercury: Results from the MESSENGER Gamma‐Ray Spectrometer , 2012 .

[2]  G. J. Taylor,et al.  REE geochemistry of oldhamite-dominated clasts from the Norton County aubrite: Igneous origin of oldhamite , 1994 .

[3]  Howard A. Garcia,et al.  Temperature and emission measure from goes soft X-ray measurements , 1994 .

[4]  Paul G. Lucey,et al.  Recalibrated Mariner 10 Color Mosaics: Implications for Mercurian Volcanism , 1997, Science.

[5]  Gretchen Benedix,et al.  Spectra of extremely reduced assemblages: Implications for Mercury , 2002 .

[6]  S. Taylor Planetary science: A lunar perspective , 1982 .

[7]  Evans,et al.  The elemental composition of asteroid 433 eros: results of the NEAR-shoemaker X-ray spectrometer , 2000, Science.

[8]  G. Kurat,et al.  An Ion Microprobe Study of a Unique Oldhamite-Pyroxenite Fragment from the Bustee Aubrite , 1992 .

[9]  S. Murchie,et al.  Volcanism on Mercury: Evidence from the first MESSENGER flyby for extrusive and explosive activity and the volcanic origin of plains , 2009 .

[10]  T. Watters,et al.  Aubrites - Their origin and relationship to enstatite chondrites , 1979 .

[11]  Zhong-wei Hu Solar system abundances of the elements. , 1991 .

[12]  S. Murchie,et al.  Caloris impact basin: Exterior geomorphology, stratigraphy, morphometry, radial sculpture, and smooth plains deposits , 2009 .

[13]  A. Fludra,et al.  The absolute coronal abundances of sulfur, calcium, and iron from Yohkoh-BCS flare spectra , 1999 .

[14]  K. L. Edmundson,et al.  Global Controlled Mosaic of Mercury from MESSENGER Orbital Images , 2011 .

[15]  Faith Vilas,et al.  Surface composition of Mercury from reflectance spectrophotometry , 1988 .

[16]  S. Bouwer Intermediate-term epochs in solar soft X ray emission , 1983 .

[17]  S. Squyres,et al.  X‐ray fluorescence measurements of the surface elemental composition of asteroid 433 Eros , 2001 .

[18]  Newell J. Trask,et al.  Preliminary geologic terrain map of Mercury , 1975 .

[19]  C. H. Whitford,et al.  The mercury imaging X-ray spectrometer (MIXS) on BepiColombo , 2010 .

[20]  Paul G. Lucey,et al.  Lunar pure anorthosite as a spectral analog for Mercury , 2002 .

[21]  Bernard V. Jackson,et al.  Evidence for space weather at Mercury , 2001 .

[22]  David K. Lynch,et al.  Mercury: Mid‐infrared (3–13.5 μm) observations show heterogeneous composition, presence of intermediate and basic soil types, and pyroxene , 2002 .

[23]  Yukio Yamamoto,et al.  X-ray Fluorescence Spectrometry of Asteroid Itokawa by Hayabusa , 2006, Science.

[24]  A. Cameron,et al.  Abundances of the elements in the solar system , 1973 .

[25]  Mark S. Ghiorso,et al.  Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures , 1995 .

[26]  F. McCubbin,et al.  Is Mercury a volatile‐rich planet? , 2012 .

[27]  Paul D. Spudis,et al.  Stratigraphy and geologic history of Mercury , 1988 .

[28]  Lucy F. Lim,et al.  Elemental composition of 433 Eros: New calibration of the NEAR-Shoemaker XRS data , 2007 .

[29]  P. Buseck,et al.  MINERALOGY AND PETROLOGY OF THE YILMIA ENSTATITE CHONDRITE , 1972 .

[30]  S. Squyres,et al.  Instrument Calibrations and Data Analysis Procedures for the NEAR X-Ray Spectrometer , 2000 .

[31]  H. Mason,et al.  CHIANTI - an atomic database for emission lines - I. Wavelengths greater than 50 Å , 1997 .

[32]  Paul D. Asimow,et al.  Algorithmic modifications extending MELTS to calculate subsolidus phase relations , 1998 .

[33]  William E. McClintock,et al.  Mercury’s Complex Exosphere: Results from MESSENGER’s Third Flyby , 2010, Science.

[34]  Brian R. Dennis,et al.  Frequency distributions and correlations of solar X-ray flare parameters , 1993 .

[35]  L. Nittler,et al.  Flood Volcanism in the Northern High Latitudes of Mercury Revealed by MESSENGER , 2011, Science.

[36]  C. Leitch,et al.  Petrography, mineral chemistry and origin of Type I enstatite chondrites , 1982 .

[37]  L. Nittler,et al.  Minor element evidence that Asteroid 433 Eros is a space-weathered ordinary chondrite parent body , 2006 .

[38]  Daniel N. Baker,et al.  Spatial Distribution and Spectral Characteristics of Energetic Electrons in Mercury's Magnetosphere , 2012 .

[39]  Richard D. Starr,et al.  Major-Element Abundances on the Surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer , 2012 .

[40]  Clark R. Chapman,et al.  Geology of the Caloris Basin, Mercury: A View from MESSENGER , 2008, Science.

[41]  Yukio Yamamoto,et al.  Lunar X-ray spectrometer experiment on the SELENE mission , 2002 .

[42]  S. Murchie,et al.  Spectroscopic Observations of Mercury's Surface Reflectance During MESSENGER's First Mercury Flyby , 2008, Science.

[43]  H. O’Neill,et al.  Analysis of 60 elements in 616 ocean floor basaltic glasses , 2012 .

[44]  R. Clayton,et al.  Oxygen isotopic compositions of enstatite chondrites and aubrites , 1984 .

[45]  T. Mccoy A pyroxene-oldhamite clast in Bustee: Igneous aubritic oldhamite and a mechanism for the Ti enrichment in aubritic troilite , 1998 .

[46]  E. Anders Chemical compositions of the Moon, Earth, and eucrite parent body , 1977, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[47]  D. Ebel,et al.  Equilibrium condensation from chondritic porous IDP enriched vapor: Implications for Mercury and enstatite chondrite origins , 2011, 2307.15763.

[48]  D. Ebel Condensation of Rocky Material in Astrophysical Environments , 2023, 2306.15043.

[49]  H. Palme,et al.  Solar System Abundances of the Elements , 2003 .

[50]  Clark R. Chapman,et al.  Mercury Cratering Record Viewed from MESSENGER's First Flyby , 2008, Science.

[51]  S. Murchie,et al.  The Distribution of Young Plains on Mercury , 2012 .

[52]  L. Nittler,et al.  Observations of suprathermal electrons in Mercury's magnetosphere during the three MESSENGER flybys , 2010 .

[53]  Donald M. Hunten,et al.  Sulfur at Mercury, Elemental at the Poles and Sulfides in the Regolith , 1995 .

[54]  K. Keil Mineralogical and chemical relationships among enstatite chondrites , 1968 .

[55]  L. Nittler,et al.  MESSENGER detection of electron-induced X-ray fluorescence from Mercury's surface , 2012 .

[56]  H. Palme,et al.  Cosmochemical Estimates of Mantle Composition , 2014 .

[57]  George Gloeckler,et al.  MESSENGER Observations of the Spatial Distribution of Planetary Ions Near Mercury , 2011, Science.

[58]  G. Neukum,et al.  The cratering record on Mercury and the origin of impacting objects , 1988 .

[59]  P. S. Athiray,et al.  The Chandrayaan-1 X-ray Spectrometer: first results , 2012 .

[60]  J. Trombka,et al.  Remote X-ray spectrometry for NEAR and future missions: Modeling and analyzing X-ray production from source to surface , 1997 .

[61]  B. Mason The enstatite chondrites , 1966 .

[62]  Maxim L. Khodachenko,et al.  The sodium exosphere of Mercury: Comparison between observations during Mercury's transit and model results , 2009 .

[63]  Gary E. Lofgren,et al.  Partial melting of the Indarch (EH4) meteorite: A textural, chemical, and phase relations view of melting and melt migration , 1999 .

[64]  Timothy J. McCoy,et al.  Non-chondritic meteorites from asteroidal bodies , 1998 .

[65]  Bernard H. Foing,et al.  X-ray fluorescence observations of the moon by SMART-1/D-CIXS and the first detection of Ti Kα from the lunar surface , 2009 .

[66]  Richard D. Starr,et al.  The Major-Element Composition of Mercury’s Surface from MESSENGER X-ray Spectrometry , 2011, Science.

[67]  Enrico Landi,et al.  Chianti-an atomic database for euv emission lines , 2000 .

[68]  R. F. Donnelly Empirical models of solar flare X ray and EUV emission for use in studying their E and F region effects , 1976 .

[69]  R. Killen,et al.  Source rates and ion recycling rates for Na and K in Mercury's atmosphere , 2004 .

[70]  A. Rubin Impact melt‐rock clasts in the Hvittis Enstatite chondrite breccia: Implications for a genetic relationship between El chondrites and aubrites , 1983 .

[71]  Nicolas Thomas,et al.  The D-CIXS X-ray spectrometer on the SMART-1 mission to the Moon - First results , 2007 .

[72]  P. S. Athiray,et al.  Lunar X-ray fluorescence observations by the Chandrayaan-1 X-ray Spectrometer (C1XS): Results from the nearside southern highlands , 2011 .

[73]  E. Pernicka,et al.  Qingzhen and Yamato-691: A tentative alphabet for the EH chondrites , 1988 .

[74]  Mark S. Robinson,et al.  The Evolution of Mercury’s Crust: A Global Perspective from MESSENGER , 2009, Science.

[75]  D. Lauretta,et al.  Thermodynamic constraints on the formation conditions of winonaites and silicate-bearing IAB irons , 2005 .

[76]  Paul Gorenstein,et al.  Apollo 15 and 16 results of the integrated geochemical experiment , 1973 .

[77]  William E. McClintock,et al.  MESSENGER Observations of Mercury’s Exosphere: Detection of Magnesium and Distribution of Constituents , 2009, Science.

[78]  David E. Smith,et al.  Topography of the Northern Hemisphere of Mercury from MESSENGER Laser Altimetry , 2012, Science.

[79]  Richard D. Starr,et al.  The X-Ray Spectrometer on the MESSENGER Spacecraft , 2007 .