Good and asymptotically good quantum codes derived from algebraic geometry

In this paper, we construct several new families of quantum codes with good parameters. These new quantum codes are derived from (classical) t-point ($$t\ge 1$$t≥1) algebraic geometry (AG) codes by applying the Calderbank–Shor–Steane (CSS) construction. More precisely, we construct two classical AG codes $$C_1$$C1 and $$C_2$$C2 such that $$C_1\subset C_2$$C1⊂C2, applying after the well-known CSS construction to $$C_1$$C1 and $$C_2$$C2. Many of these new codes have large minimum distances when compared with their code lengths as well as they also have small Singleton defects. As an example, we construct a family $${[[46, 2(t_2 - t_1), d]]}_{25}$$[[46,2(t2-t1),d]]25 of quantum codes, where $$t_1 , t_2$$t1,t2 are positive integers such that $$1<t_1< t_2 < 23$$1<t1<t2<23 and $$d\ge \min \{ 46 - 2t_2 , 2t_1 - 2 \}$$d≥min{46-2t2,2t1-2}, of length $$n=46$$n=46, with minimum distance in the range $$2\le d\le 20$$2≤d≤20, having Singleton defect at most four. Additionally, by applying the CSS construction to sequences of t-point (classical) AG codes constructed in this paper, we generate sequences of asymptotically good quantum codes.

[1]  Andrew M. Steane Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.

[2]  Markus Grassl,et al.  Quantum Reed-Solomon Codes , 1999, AAECC.

[3]  Hao Chen,et al.  Asymptotically good quantum codes exceeding the Ashikhmin-Litsyn-Tsfasman bound , 2001, IEEE Trans. Inf. Theory.

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Jon-Lark Kim,et al.  Nonbinary quantum error-correcting codes from algebraic curves , 2008, Discret. Math..

[6]  Lingfei Jin Quantum Stabilizer Codes From Maximal Curves , 2014, IEEE Transactions on Information Theory.

[7]  Giuliano G. La Guardia,et al.  Asymmetric quantum codes: new codes from old , 2013, Quantum Information Processing.

[8]  H. Stichtenoth,et al.  On the Asymptotic Behaviour of Some Towers of Function Fields over Finite Fields , 1996 .

[9]  G. L. Guardia Constructions of new families of nonbinary quantum codes , 2009 .

[10]  Hao Chen Some good quantum error-correcting codes from algebraic-Geometric codes , 2001, IEEE Trans. Inf. Theory.

[11]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[12]  Harald Niederreiter,et al.  Algebraic Geometry in Coding Theory and Cryptography , 2009 .

[13]  Chaoping Xing,et al.  Euclidean and Hermitian Self-Orthogonal Algebraic Geometry Codes and Their Application to Quantum Codes , 2012, IEEE Transactions on Information Theory.

[14]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.

[15]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[16]  Henning Stichtenoth,et al.  Transitive and self-dual codes attaining the Tsfasman-Vla/spl breve/dut$80-Zink bound , 2006, IEEE Transactions on Information Theory.

[17]  Pradeep Kiran Sarvepalli,et al.  On Quantum and Classical BCH Codes , 2006, IEEE Transactions on Information Theory.

[18]  Ryutaroh Matsumoto,et al.  Improvement of Ashikhmin-Litsyn-Tsfasman bound for quantum codes , 2002, Proceedings IEEE International Symposium on Information Theory,.

[19]  Steane,et al.  Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[20]  G. Gadioli La Guardia,et al.  On the Construction of Nonbinary Quantum BCH Codes , 2012, IEEE Transactions on Information Theory.

[21]  Giuliano G. La Guardia,et al.  New Quantum MDS Codes , 2011, IEEE Transactions on Information Theory.

[22]  S. Litsyn,et al.  Asymptotically Good Quantum Codes , 2000, quant-ph/0006061.

[23]  Carlos Munuera,et al.  Quantum error-correcting codes from algebraic geometry codes of Castle type , 2016, Quantum Inf. Process..

[24]  Henning Stichtenoth Transitive and Self-dual Codes Attaining the Tsfasman-Vladut-Zink Bound , 2005 .

[25]  Giuliano G. La Guardia,et al.  Asymmetric quantum Reed-Solomon and generalized Reed-Solomon codes , 2011, Quantum Information Processing.

[26]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[27]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .