Effects of bicarbonate induced iron chlorosis on photosynthesis apparatus in grapevine

[1]  Sohrab Davarpanah,et al.  Effect of Foliar Application of Phosphorus, Potassium and Iron on Physical and Chemical Properties of Pomegranate Fruit , 2018 .

[2]  J. Kromdijk,et al.  Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? , 2018, Photosynthetica.

[3]  R. Strasser,et al.  Classification and characteristics of heat tolerance in Ageratina adenophora populations using fast chlorophyll a fluorescence rise O-J-I-P , 2016 .

[4]  H. Gerós,et al.  Kaolin exogenous application boosts antioxidant capacity and phenolic content in berries and leaves of grapevine under summer stress. , 2016, Journal of plant physiology.

[5]  A. Rombolà,et al.  Organic acids metabolism in roots of grapevine rootstocks under severe iron deficiency , 2015, Plant and Soil.

[6]  M. Hamidpour,et al.  Effects of bicarbonate and different Fe sources on vegetative growth and physiological characteristics of bell pepper (Capsicum annuum L.) plants in hydroponic system , 2015 .

[7]  A. Rombolà,et al.  Physiological and biochemical responses of the iron chlorosis tolerant grapevine rootstock 140 Ruggeri to iron deficiency and bicarbonate , 2013, Plant and Soil.

[8]  K. Zushi,et al.  Chlorophyll a fluorescence OJIP transient as a tool to characterize and evaluate response to heat and chilling stress in tomato leaf and fruit , 2012 .

[9]  A. Oukarroum,et al.  Screening for drought tolerance in mutant germplasm of sesame (Sesamum indicum) probing by chlorophyll a fluorescence , 2012 .

[10]  Meena Misra,et al.  Chlorophyll Fluorescence in Plant Biology , 2012 .

[11]  M. Shariati,et al.  EFFECTS OF SALT STRESS ON PHOTOSYSTEM II OF CANOLA PLANT (BARASSICA NAPUS, L.) PROBING BY CHLOROPHYLL A FLUORESCENCE MEASUREMENTS , 2012 .

[12]  I. B. Salah,et al.  Comparison of three pea cultivars (Pisum sativum) regarding their responses to direct and bicarbonate-induced iron deficiency , 2011 .

[13]  A. Sabir,et al.  Response of four grapevine (Vitis spp.) genotypes to direct or bicarbonate-induced iron deficiency , 2010 .

[14]  S. Mathur,et al.  Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. , 2010, Plant physiology and biochemistry : PPB.

[15]  T. Antal,et al.  Probing of photosynthetic reactions in four phytoplanktonic algae with a PEA fluorometer , 2009, Photosynthesis Research.

[16]  A. Ranieri,et al.  Differential responses in pear and quince genotypes induced by Fe deficiency and bicarbonate. , 2009, Journal of plant physiology.

[17]  W. Manning,et al.  Ozone sensitivity and ethylenediurea protection in ash trees assessed by JIP chlorophyll a fluorescence transient analysis , 2009, Photosynthetica.

[18]  R. Ksouri,et al.  Genotypic variability within Tunisian grapevine varieties (Vitis vinifera L.) facing bicarbonate-induced iron deficiency. , 2007, Plant physiology and biochemistry : PPB.

[19]  A. Rombolà,et al.  Nitrogen nutrition influences some biochemical responses to iron deficiency in tolerant and sensitive genotypes of Vitis , 2007, Plant and Soil.

[20]  P. Fisher,et al.  Iron Form and Concentration Affect Nutrition of Container-grown Pelargonium and Calibrachoa , 2006 .

[21]  I. Therios,et al.  Effects of 4-month Fe deficiency exposure on Fe reduction mechanism, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance. , 2006, Journal of plant physiology.

[22]  N. Nedunchezhian,et al.  Grapevine Growth and Physiological Responses to Iron Deficiency , 2005 .

[23]  R. Strasser,et al.  Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. , 2005, Biochimica et biophysica acta.

[24]  K. Oxborough,et al.  Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. , 2004, Journal of experimental botany.

[25]  Chuangdao Jiang,et al.  Changes of Donor and Acceptor Side in Photosystem 2 Complex Induced by Iron Deficiency in Attached Soybean and Maize Leaves , 2003, Photosynthetica.

[26]  B. Borghi,et al.  Effect of Iron Deficiency Induced Changes on Photosynthetic Pigments, Ribulose-1,5-Bisphosphate Carboxylase, and Photosystem Activities in Field Grown Grapevine (Vitis Vinifera L. cv. Pinot Noir) Leaves , 2001, Photosynthetica.

[27]  J. Abadía,et al.  Iron deficiency causes changes in chlorophyll fluorescence due to the reduction in the dark of the Photosystem II acceptor side , 1998, Photosynthesis Research.

[28]  R. Strasser,et al.  Analysis of the Chlorophyll a Fluorescence Transient , 2004 .

[29]  A. Moing,et al.  Organic Acid Metabolism in Roots of Various Grapevine (Vitis) Rootstocks Submitted to Iron Deficiency and Bicarbonate Nutrition , 2003 .

[30]  Manuel D. de laGuardia,et al.  BICARBONATE AND LOW IRON LEVEL INCREASE ROOT TO TOTAL PLANT WEIGHT RATIO IN OLIVE AND PEACH ROOTSTOCK , 2002 .

[31]  K. Muthuchelian,et al.  Iron deficiency induced changes on the donor side of PS II in field grown grapevine (Vitis vinifera L. cv. Pinot noir) leaves , 2002 .

[32]  Amarendra Narayan Misra,et al.  Utilization of fast chlorophyll a fluorescence technique in assessing the salt/ion sensitivity of mung bean and Brassica seedlings , 2001 .

[33]  A. Scienza,et al.  Use of biochemical parameters to select grapevine genotypes resistant to iron‐chlorosis , 2000 .

[34]  K Maxwell,et al.  Chlorophyll fluorescence--a practical guide. , 2000, Journal of experimental botany.

[35]  R. Strasser,et al.  The fluorescence transient as a tool to characterize and screen photosynthetic samples , 2000 .

[36]  R. T. Fernandez,et al.  Drought Response of Young Apple Trees on Three Rootstocks. II. Gas Exchange, Chlorophyll Fluorescence, Water Relations, and Leaf Abscisic Acid , 1997 .