Linear Parameter-Varying Control for Variations in Thermal Gradients across Hypersonic Vehicles

Flight at hypersonic speeds will induce signiflcant heating on the vehicle. The resulting thermal gradients will cause spatially-varying temperatures that range across the fuselage. These thermal gradients will afiect the modal properties of the structural dynamics and, due to aerothermoelastic coupling, afiect the ∞ight dynamics. This paper introduces the linear parameter-varying framework to compensate for the efiects of the thermal proflles. The dynamics of a hypersonic vehicle are expressed with a dependency on the temperature at difierent locations along the fuselage. A controller is then synthesized that is inherently scheduled on these temperature values. The approach is demonstrated to achieve vibration attenuation of a structural mode for a wide range of thermal proflles.

[1]  S. Yurkovich,et al.  Model-Predictive Dynamic Control Allocation Scheme for Reentry Vehicles , 2007 .

[2]  David B. Doman,et al.  Robust Linear Output Feedback Control of an Airbreathing Hypersonic Vehicle , 2008 .

[3]  David K. Schmidt,et al.  Analytical aeropropulsive-aeroelastic hypersonic-vehicle model with dynamic analysis , 1994 .

[4]  David K. Schmidt,et al.  Integrated control of hypersonic vehicles , 1993 .

[5]  David K. Schmidt,et al.  Integrated control of hypersonic vehicles - A necessity not just a possibility , 1993 .

[6]  G. Sachs,et al.  Flight dynamics and robust control of a hypersonic test vehicle with ramjet propulsion , 1998 .

[7]  Andrew G. Sparks,et al.  Multi-loop aeroservoelastic control of a hypersonic vehicle , 1999 .

[8]  David B. Doman,et al.  Nonlinear Longitudinal Dynamical Model of an Air-Breathing Hypersonic Vehicle , 2007 .

[9]  Erwin Mooij,et al.  Numerical Investigation of Model Reference Adaptive Control for Hypersonic Aircraft , 2001 .

[10]  David B. Doman,et al.  Control-Oriented Modeling of an Air-Breathing Hypersonic Vehicle , 2007 .

[11]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[12]  David B. Doman,et al.  A Flexible Hypersonic Vehicle Model Developed With Piston Theory (Preprint) , 2006 .

[13]  Robert F. Stengel,et al.  Robust Nonlinear Control of a Hypersonic Aircraft , 1999 .

[14]  Michael G. Gilbert,et al.  Active Control of Aerothermoelastic Effects for a Conceptual Hypersonic Aircraft , 1990 .

[15]  Anthony J. Calise,et al.  Uncertainty Modeling and Fixed-Order Controller Design for a Hypersonic Vehicle Model , 1997 .

[16]  Michael A. Bolender,et al.  A Non-Linear Model for the Longitudinal Dynamics of a Hypersonic Air-breathing Vehicle , 2005 .

[17]  Michael A. Bolender,et al.  NONLINEAR ROBUST/ADAPTIVE CONTROLLER DESIGN FOR AN AIR- BREATHING HYPERSONIC VEHICLE MODEL (PREPRINT) , 2007 .

[18]  David B. Doman,et al.  Output feedback control and sensor placement for a hypersonic vehicle model , 2007 .

[19]  Michael A. Bolender,et al.  An Aerothermal Flexible Mode Analysis of a Hypersonic Vehicle (Postprint) , 2006 .

[20]  Petros A. Ioannou,et al.  Adaptive Sliding Mode Control Design fo ra Hypersonic Flight Vehicle , 2004 .

[21]  Walter C. Engelund,et al.  Aerothermoelastic analysis of a NASP demonstrator model , 1993 .

[22]  Michael A. Bolender,et al.  Aerothermal Modeling and Dynamic Analysis of a Hypersonic Vehicle , 2007 .