The Weber-Seifert dodecahedral space is non-Haken

In this paper we settle Thurston's old question of whether the Weber-Seifert dodecahedral space is non-Haken, a problem that has been a benchmark for progress in computational 3-manifold topology over recent decades. We resolve this question by combining recent significant advances in normal surface enumeration, new heuristic pruning techniques, and a new theoretical test that extends the seminal work of Jaco and Oertel.

[1]  Ulrich Oertel,et al.  An algorithm to decide if a 3-manifold is a Haken manifold , 1984 .

[2]  Jeffrey L. Tollefson NORMAL SURFACE Q-THEORY , 1998 .

[3]  Benjamin A. Burton Introducing Regina, The 3-Manifold Topology Software , 2004, Exp. Math..

[4]  Udo Pachner,et al.  P.L. Homeomorphic Manifolds are Equivalent by Elementary 5hellingst , 1991, Eur. J. Comb..

[5]  J. Hyam Rubinstein,et al.  0-Efficient Triangulations of 3-Manifolds , 2002 .

[6]  H. Seifert,et al.  Die beiden Dodekaederräume , 1933 .

[7]  Benjamin A. Burton Converting between quadrilateral and standard solution sets in normal surface theory , 2009, 0901.2629.

[8]  Sergei Matveev,et al.  Computer Recognition of Three-Manifolds , 1998, Exp. Math..

[9]  Jeffrey R. Weeks,et al.  A census of cusped hyperbolic 3-manifolds , 1999, Math. Comput..

[10]  Benjamin A. Burton The complexity of the normal surface solution space , 2010, SoCG '10.

[11]  Benjamin A. Burton Optimizing the double description method for normal surface enumeration , 2008, Math. Comput..

[12]  Benjamin A. Burton FACE PAIRING GRAPHS AND 3-MANIFOLD ENUMERATION , 2004 .

[13]  P. McMullen The maximum numbers of faces of a convex polytope , 1970 .

[14]  David Letscher,et al.  Algorithms for essential surfaces in 3-manifolds , 2002 .

[15]  W. Haken Theorie der Normalflächen , 1961 .

[16]  J. L. Tollefson Isotopy classes of incompressible surfaces in irreducible 3-manifolds , 1995 .

[17]  Stephan Tillmann,et al.  Minimal triangulations for an infinite family of lens spaces , 2008, 0805.2425.