The Weber-Seifert dodecahedral space is non-Haken
暂无分享,去创建一个
[1] Ulrich Oertel,et al. An algorithm to decide if a 3-manifold is a Haken manifold , 1984 .
[2] Jeffrey L. Tollefson. NORMAL SURFACE Q-THEORY , 1998 .
[3] Benjamin A. Burton. Introducing Regina, The 3-Manifold Topology Software , 2004, Exp. Math..
[4] Udo Pachner,et al. P.L. Homeomorphic Manifolds are Equivalent by Elementary 5hellingst , 1991, Eur. J. Comb..
[5] J. Hyam Rubinstein,et al. 0-Efficient Triangulations of 3-Manifolds , 2002 .
[6] H. Seifert,et al. Die beiden Dodekaederräume , 1933 .
[7] Benjamin A. Burton. Converting between quadrilateral and standard solution sets in normal surface theory , 2009, 0901.2629.
[8] Sergei Matveev,et al. Computer Recognition of Three-Manifolds , 1998, Exp. Math..
[9] Jeffrey R. Weeks,et al. A census of cusped hyperbolic 3-manifolds , 1999, Math. Comput..
[10] Benjamin A. Burton. The complexity of the normal surface solution space , 2010, SoCG '10.
[11] Benjamin A. Burton. Optimizing the double description method for normal surface enumeration , 2008, Math. Comput..
[12] Benjamin A. Burton. FACE PAIRING GRAPHS AND 3-MANIFOLD ENUMERATION , 2004 .
[13] P. McMullen. The maximum numbers of faces of a convex polytope , 1970 .
[14] David Letscher,et al. Algorithms for essential surfaces in 3-manifolds , 2002 .
[15] W. Haken. Theorie der Normalflächen , 1961 .
[16] J. L. Tollefson. Isotopy classes of incompressible surfaces in irreducible 3-manifolds , 1995 .
[17] Stephan Tillmann,et al. Minimal triangulations for an infinite family of lens spaces , 2008, 0805.2425.