Embedded deformation for shape manipulation

We present an algorithm that generates natural and intuitive deformations via direct manipulation for a wide range of shape representations and editing scenarios. Our method builds a space deformation represented by a collection of affine transformations organized in a graph structure. One transformation is associated with each graph node and applies a deformation to the nearby space. Positional constraints are specified on the points of an embedded object. As the user manipulates the constraints, a nonlinear minimization problem is solved to find optimal values for the affine transformations. Feature preservation is encoded directly in the objective function by measuring the deviation of each transformation from a true rotation. This algorithm addresses the problem of "embedded deformation" since it deforms space through direct manipulation of objects embedded within it, while preserving the embedded objects' features. We demonstrate our method by editing meshes, polygon soups, mesh animations, and animated particle systems.

[1]  Michael Gleicher,et al.  Building efficient, accurate character skins from examples , 2003, ACM Trans. Graph..

[2]  Philip E. Gill,et al.  Practical optimization , 1981 .

[3]  Markus H. Gross,et al.  PriMo: coupled prisms for intuitive surface modeling , 2006, SGP '06.

[4]  Zoran Popovic,et al.  The space of human body shapes: reconstruction and parameterization from range scans , 2003, ACM Trans. Graph..

[5]  H. Shum,et al.  Subspace gradient domain mesh deformation , 2006, SIGGRAPH 2006.

[6]  Alan H. Barr,et al.  Global and local deformations of solid primitives , 1984, SIGGRAPH.

[7]  Wei-Wen Feng,et al.  A fast multigrid algorithm for mesh deformation , 2006, ACM Trans. Graph..

[8]  Kaj Madsen,et al.  Methods for Non-Linear Least Squares Problems , 1999 .

[9]  Kenneth I. Joy,et al.  Free-form deformations with lattices of arbitrary topology , 1996, SIGGRAPH.

[10]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[11]  Olga Sorkine-Hornung,et al.  On Linear Variational Surface Deformation Methods , 2008, IEEE Transactions on Visualization and Computer Graphics.

[12]  Leif Kobbelt,et al.  An intuitive framework for real-time freeform modeling , 2004, SIGGRAPH 2004.

[13]  Evangelos Kokkevis,et al.  Skinning Characters using Surface Oriented Free-Form Deformations , 2000, Graphics Interface.

[14]  Sabine Coquillart,et al.  Extended free-form deformation: a sculpturing tool for 3D geometric modeling , 1990, SIGGRAPH.

[15]  Michael Garland,et al.  Editing arbitrarily deforming surface animations , 2006, ACM Trans. Graph..

[16]  Olga Sorkine,et al.  Laplacian Mesh Processing , 2005 .

[17]  John F. Hughes,et al.  Direct manipulation of free-form deformations , 1992, SIGGRAPH.

[18]  Markus Gross,et al.  Deformation Transfer for Detail-Preserving Surface Editing , 2006 .

[19]  Alla Sheffer,et al.  Pyramid coordinates for morphing and deformation , 2004 .

[20]  Leif Kobbelt,et al.  Real‐Time Shape Editing using Radial Basis Functions , 2005, Comput. Graph. Forum.

[21]  Leonidas J. Guibas,et al.  Example-Based 3D Scan Completion , 2005 .

[22]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[23]  Eugene Fiume,et al.  Wires: a geometric deformation technique , 1998, SIGGRAPH.

[24]  John M. Snyder,et al.  Large mesh deformation using the volumetric graph Laplacian , 2005, SIGGRAPH '05.

[25]  F. Sebastian Grassia,et al.  Practical Parameterization of Rotations Using the Exponential Map , 1998, J. Graphics, GPU, & Game Tools.

[26]  Jovan Popović,et al.  Deformation transfer for triangle meshes , 2004, SIGGRAPH 2004.