Bayesian Inverse Problems with L[subscript 1] Priors: A Randomize-Then-Optimize Approach
暂无分享,去创建一个
Tiangang Cui | Zheng Wang | Johnathan M. Bardsley | Youssef M. Marzouk | Antti Solonen | Y. Marzouk | J. Bardsley | Zheng Wang | A. Solonen | T. Cui
[1] Y. Marzouk,et al. An introduction to sampling via measure transport , 2016, 1602.05023.
[2] Andrew Gelman,et al. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..
[3] Y. Atchadé. An Adaptive Version for the Metropolis Adjusted Langevin Algorithm with a Truncated Drift , 2006 .
[4] E. Somersalo,et al. Statistical and computational inverse problems , 2004 .
[5] Peter Green,et al. Markov chain Monte Carlo in Practice , 1996 .
[6] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[7] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[8] I. Daubechies. Ten Lectures on Wavelets , 1992 .
[9] Ulli Wolff,et al. Monte Carlo errors with less errors , 2004 .
[10] S. E. Ahmed,et al. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.
[11] Charles J. Geyer,et al. Practical Markov Chain Monte Carlo , 1992 .
[12] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[13] E. Somersalo,et al. Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .
[14] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[15] I. Daubechies,et al. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.
[16] Matthias Morzfeld,et al. Implicit particle filters for data assimilation , 2010, 1005.4002.
[17] James Martin,et al. A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..
[18] Heikki Haario,et al. DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..
[19] Johnathan M. Bardsley,et al. Laplace-distributed increments, the Laplace prior, and edge-preserving regularization , 2012 .
[20] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[21] Daniela Calvetti,et al. Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing , 2007 .
[22] Youssef M. Marzouk,et al. Bayesian inference with optimal maps , 2011, J. Comput. Phys..
[23] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[24] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[25] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[26] R. Tweedie,et al. Exponential convergence of Langevin distributions and their discrete approximations , 1996 .
[27] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[28] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[29] Youssef Marzouk,et al. Transport Map Accelerated Markov Chain Monte Carlo , 2014, SIAM/ASA J. Uncertain. Quantification.
[30] R. Tweedie,et al. Rates of convergence of the Hastings and Metropolis algorithms , 1996 .
[31] C. Geyer,et al. Correction: Variable transformation to obtain geometric ergodicity in the random-walk Metropolis algorithm , 2012, 1302.6741.
[32] Dean S. Oliver,et al. Metropolized Randomized Maximum Likelihood for Improved Sampling from Multimodal Distributions , 2015, SIAM/ASA J. Uncertain. Quantification.
[33] Dean S. Oliver,et al. Conditioning Permeability Fields to Pressure Data , 1996 .
[34] A. Stuart,et al. Besov priors for Bayesian inverse problems , 2011, 1105.0889.
[35] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[36] Tiangang Cui,et al. Dimension-independent likelihood-informed MCMC , 2014, J. Comput. Phys..
[37] S. Siltanen,et al. Can one use total variation prior for edge-preserving Bayesian inversion? , 2004 .
[38] Jonathan C. Mattingly,et al. Diffusion limits of the random walk metropolis algorithm in high dimensions , 2010, 1003.4306.
[39] Geoff K. Nicholls,et al. Prior modeling and posterior sampling in impedance imaging , 1998, Optics & Photonics.
[40] F. Lucka. Fast Markov chain Monte Carlo sampling for sparse Bayesian inference in high-dimensional inverse problems using L1-type priors , 2012, 1206.0262.
[41] Samuli Siltanen,et al. Linear and Nonlinear Inverse Problems with Practical Applications , 2012, Computational science and engineering.
[42] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[43] Heikki Haario,et al. Randomize-Then-Optimize: A Method for Sampling from Posterior Distributions in Nonlinear Inverse Problems , 2014, SIAM J. Sci. Comput..
[44] Matthias Morzfeld,et al. A random map implementation of implicit filters , 2011, J. Comput. Phys..
[45] C. Vogel. Computational Methods for Inverse Problems , 1987 .
[46] V. Kolehmainen,et al. Sparsity-promoting Bayesian inversion , 2012 .
[47] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[48] Matti Lassas. Eero Saksman,et al. Discretization-invariant Bayesian inversion and Besov space priors , 2009, 0901.4220.
[49] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .
[50] G. Roberts,et al. MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.