Bayesian Inverse Problems with L[subscript 1] Priors: A Randomize-Then-Optimize Approach

Prior distributions for Bayesian inference that rely on the l1-norm of the parameters are of considerable interest, in part because they promote parameter fields with less regularity than Gaussian priors (e.g., discontinuities and blockiness). These l1-type priors include the total variation (TV) prior and the Besov space Bs 1,1 prior, and in general yield non-Gaussian posterior distributions. Sampling from these posteriors is challenging, particularly in the inverse problem setting where the parameter space is high-dimensional and the forward problem may be nonlinear. This paper extends the randomize-then-optimize (RTO) method, an optimization-based sampling algorithm developed for Bayesian inverse problems with Gaussian priors, to inverse problems with l1-type priors. We use a variable transformation to convert an l1-type prior to a standard Gaussian prior, such that the posterior distribution of the transformed parameters is amenable to Metropolized sampling via RTO. We demonstrate this approach on several deconvolution problems and an elliptic PDE inverse problem, using TV or Besov space Bs 1,1 priors. Our results show that the transformed RTO algorithm characterizes the correct posterior distribution and can be more efficient than other sampling algorithms. The variable transformation can also be extended to other non-Gaussian priors.

[1]  Y. Marzouk,et al.  An introduction to sampling via measure transport , 2016, 1602.05023.

[2]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[3]  Y. Atchadé An Adaptive Version for the Metropolis Adjusted Langevin Algorithm with a Truncated Drift , 2006 .

[4]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[5]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[6]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[7]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[8]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[9]  Ulli Wolff,et al.  Monte Carlo errors with less errors , 2004 .

[10]  S. E. Ahmed,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.

[11]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[12]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[13]  E. Somersalo,et al.  Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .

[14]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[15]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[16]  Matthias Morzfeld,et al.  Implicit particle filters for data assimilation , 2010, 1005.4002.

[17]  James Martin,et al.  A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..

[18]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[19]  Johnathan M. Bardsley,et al.  Laplace-distributed increments, the Laplace prior, and edge-preserving regularization , 2012 .

[20]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[21]  Daniela Calvetti,et al.  Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing , 2007 .

[22]  Youssef M. Marzouk,et al.  Bayesian inference with optimal maps , 2011, J. Comput. Phys..

[23]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[24]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[25]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[26]  R. Tweedie,et al.  Exponential convergence of Langevin distributions and their discrete approximations , 1996 .

[27]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[28]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[29]  Youssef Marzouk,et al.  Transport Map Accelerated Markov Chain Monte Carlo , 2014, SIAM/ASA J. Uncertain. Quantification.

[30]  R. Tweedie,et al.  Rates of convergence of the Hastings and Metropolis algorithms , 1996 .

[31]  C. Geyer,et al.  Correction: Variable transformation to obtain geometric ergodicity in the random-walk Metropolis algorithm , 2012, 1302.6741.

[32]  Dean S. Oliver,et al.  Metropolized Randomized Maximum Likelihood for Improved Sampling from Multimodal Distributions , 2015, SIAM/ASA J. Uncertain. Quantification.

[33]  Dean S. Oliver,et al.  Conditioning Permeability Fields to Pressure Data , 1996 .

[34]  A. Stuart,et al.  Besov priors for Bayesian inverse problems , 2011, 1105.0889.

[35]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[36]  Tiangang Cui,et al.  Dimension-independent likelihood-informed MCMC , 2014, J. Comput. Phys..

[37]  S. Siltanen,et al.  Can one use total variation prior for edge-preserving Bayesian inversion? , 2004 .

[38]  Jonathan C. Mattingly,et al.  Diffusion limits of the random walk metropolis algorithm in high dimensions , 2010, 1003.4306.

[39]  Geoff K. Nicholls,et al.  Prior modeling and posterior sampling in impedance imaging , 1998, Optics & Photonics.

[40]  F. Lucka Fast Markov chain Monte Carlo sampling for sparse Bayesian inference in high-dimensional inverse problems using L1-type priors , 2012, 1206.0262.

[41]  Samuli Siltanen,et al.  Linear and Nonlinear Inverse Problems with Practical Applications , 2012, Computational science and engineering.

[42]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[43]  Heikki Haario,et al.  Randomize-Then-Optimize: A Method for Sampling from Posterior Distributions in Nonlinear Inverse Problems , 2014, SIAM J. Sci. Comput..

[44]  Matthias Morzfeld,et al.  A random map implementation of implicit filters , 2011, J. Comput. Phys..

[45]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[46]  V. Kolehmainen,et al.  Sparsity-promoting Bayesian inversion , 2012 .

[47]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[48]  Matti Lassas. Eero Saksman,et al.  Discretization-invariant Bayesian inversion and Besov space priors , 2009, 0901.4220.

[49]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[50]  G. Roberts,et al.  MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.