Model-checking of causality properties

A temporal logic for causality (T/sub LC/) is introduced. The logic is interpreted over causal structures corresponding to partial order executions of programs. For causal structures describing the behavior of a finite fixed set of processes, a T/sub LC/-formula can, equivalently, be interpreted over their linearizations. The main result of the paper is a tableau construction that gives a singly-exponential translation from a T/sub LC/ formula /spl psi/ to a Streett automaton that accepts the set of linearizations satisfying /spl psi/. This allows both checking the validity of T/sub LC/ formulas and model-checking of program properties. As the logic T/sub LC/ does not distinguish among different linearizations of the same partial order execution, partial order reduction techniques can be applied to alleviate the state-space explosion problem of model-checking.

[1]  E. Clarke,et al.  Automatic Veriication of Nite-state Concurrent Systems Using Temporal-logic Speciications. Acm , 1993 .

[2]  Amir Pnueli,et al.  Proving Partial Order Properties , 1994, Theor. Comput. Sci..

[3]  Gerard J. Holzmann,et al.  An improvement in formal verification , 1994, FORTE.

[4]  Pierre Wolper,et al.  A Partial Approach to Model Checking , 1994, Inf. Comput..

[5]  Doron A. Peled,et al.  Combining partial order reductions with on-the-fly model-checking , 1994, Formal Methods Syst. Des..

[6]  Wojciech Penczek,et al.  A Temporal Logic for Event Structures , 1990 .

[7]  Madhavan Mukund,et al.  A Logical Characterization of Well Branching Event Structures , 1992, Theor. Comput. Sci..

[8]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[9]  Wolfgang Reisig,et al.  Partial Order Semantics versus Interleaving Semantics for CSP-like Languages and its Impact on Fairness , 1984, ICALP.

[10]  Pierre Wolper,et al.  Reasoning about infinite computation paths , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[11]  Wieslaw Zielonka,et al.  Notes on Finite Asynchronous Automata , 1987, RAIRO Theor. Informatics Appl..

[12]  Robert S. Streett,et al.  Propositional Dynamic Logic of Looping and Converse Is Elementarily Decidable , 1982, Inf. Control..

[13]  P. S. Thiagarajan,et al.  A trace based extension of linear time temporal logic , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[14]  Amir Pnueli,et al.  Checking that finite state concurrent programs satisfy their linear specification , 1985, POPL.

[15]  Antoni W. Mazurkiewicz,et al.  Trace Theory , 1986, Advances in Petri Nets.

[16]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Automatic Program Verification (Preliminary Report) , 1986, LICS.

[17]  Pierre Wolper,et al.  A temporal logic for reasoning about partially ordered computations (Extended Abstract) , 1984, PODC '84.

[18]  Glynn Winskel,et al.  Event Structures , 1986, Advances in Petri Nets.

[19]  WOJCIECH PENCZEK,et al.  Temporal Logics for Trace Systems: On Automated Verification , 1993, Int. J. Found. Comput. Sci..

[20]  Martin Peschke,et al.  Design and Validation of Computer Protocols , 2003 .

[21]  Doron A. Peled,et al.  Interleaving set temporal logic , 1987, PODC '87.

[22]  Wojciech Penczek,et al.  A Temporal Logic for the Local Specification of Concurrent Systems , 1989, IFIP Congress.

[23]  Doron A. Peled Combining Partial Order Reductions with On-the-fly Model-Checking , 1994, CAV.

[24]  Antti Valmari,et al.  A stubborn attack on state explosion , 1990, Formal Methods Syst. Des..