Divergence control of a one-level supply chain replenishment rule

We present a general control and improvement strategy for a one-level supply chain based on maintaining the divergence of the system close to zero at each time step. The online implementations as well as the results obtained are shown for a logistic chain model with an Order-Up-To policy using several demand patterns. The divergence can be obtained using the state-space volume calculated with all the state variables of the model. However, it is also possible to calculate the divergence by applying state-space reconstruction techniques using only one state variable. The results obtained with both approaches show that this strategy allows the reduction in the total cost.

[1]  Keisuke Matsuyama Maintaining optimal inventory level by feedbacks , 1997 .

[2]  Spyros G. Tzafestas,et al.  Model-based predictive control for generalized production planning problems , 1997 .

[3]  Christos D. Tarantilis,et al.  Dynamic modeling and control of supply chain systems: A review , 2008, Comput. Oper. Res..

[4]  S. Disney,et al.  On bullwhip in supply chains--historical review, present practice and expected future impact , 2006 .

[5]  V. Arnold,et al.  Ordinary Differential Equations , 1973 .

[6]  Strozzi Fernanda,et al.  On-Line Application of the Divergence Criterion for Runaway Detection in Isothermal Batch Reactors. Simulated and Experimental Results , 2002 .

[7]  Fernanda Strozzi,et al.  Beer game order policy optimization under changing customer demand , 2007, Decis. Support Syst..

[8]  Chandrasekharan Rajendran,et al.  A simulation-based genetic algorithm for inventory optimization in a serial supply chain , 2005, Int. Trans. Oper. Res..

[9]  Thomas Schreiber,et al.  FAST NONLINEAR PROJECTIVE FILTERING IN A DATA STREAM , 1998 .

[10]  Kenneth Gilbert,et al.  An ARIMA Supply Chain Model , 2005, Manag. Sci..

[11]  F. Takens Detecting strange attractors in turbulence , 1981 .

[12]  Keith Tizzard,et al.  Management System Dynamics , 1977 .

[13]  Elena Ciancimino,et al.  On the Bullwhip Avoidance Phase: supply chain collaboration and order smoothing , 2010 .

[14]  P. Grassberger,et al.  NONLINEAR TIME SEQUENCE ANALYSIS , 1991 .

[15]  Stephen Michael Disney,et al.  The order-up-to policy "sweet spot": using proportional controllers to eliminate the bullwhip problem , 2003 .

[16]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[17]  Mehmet Emre Çek,et al.  Analysis of observed chaotic data , 2004 .

[18]  Stephen M. Disney,et al.  On Replenishment Rules, Forecasting, and the Bullwhip Effect in Supply Chains , 2008, Found. Trends Technol. Inf. Oper. Manag..

[19]  Joseph P. Zbilut,et al.  On-line runaway detection in isoperibolic batch and semibatch reactors using the divergence criterion , 2004, Comput. Chem. Eng..

[20]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[21]  Stephen M. Disney,et al.  Taming the bullwhip effect whilst watching customer service in a single supply chain echelon , 2006, Eur. J. Oper. Res..

[22]  J. Holmström,et al.  Supply chain collaboration: making sense of the strategy continuum , 2005 .

[23]  Fernanda Strozzi,et al.  On-Line Runaway Detection in Batch Reactors Using Chaos Theory Techniques. , 1999 .

[24]  J. Miller Numerical Analysis , 1966, Nature.

[25]  Carlo Noe,et al.  Stability Control in a Supply Chain: Total Costs and Bullwhip Effect Reduction , 2008 .

[26]  D. P. Deziel,et al.  A linear production-inventory control rule , 1967 .

[27]  Tommaso Rossi,et al.  Bullwhip effect and inventory oscillations analysis using the beer game model , 2010 .

[28]  Wilfrid Perruquetti,et al.  On Ergodic Theory of Chaos , 2005 .

[29]  John F. Magee,et al.  Production planning and inventory control , 1958 .

[30]  Stephen Michael Disney,et al.  The myopic Order-Up-To policy with a proportional feedback controller , 2007 .

[31]  Vineet Padmanabhan,et al.  Comments on "Information Distortion in a Supply Chain: The Bullwhip Effect" , 1997, Manag. Sci..

[32]  Stephen Michael Disney,et al.  State space investigation of the bullwhip problem with ARMA(1,1) demand processes , 2006 .

[33]  David Ruelle,et al.  Ergodic Theory of Chaos , 1985, Topical Meeting on Optical Bistability (OB3).

[34]  Fernanda Strozzi,et al.  Phase-Space Volume Based Control of Semibatch Reactors , 2010 .

[35]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[36]  J. A. Stewart,et al.  Nonlinear Time Series Analysis , 2015 .

[37]  W. N. Jessop Management System Dynamics , 1978 .

[38]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[39]  Denis Royston Towill,et al.  Dynamic analysis of an inventory and order based production control system , 1982 .

[40]  Denis Royston Towill,et al.  Genetic algorithm optimisation of a class of inventory control systems , 2000 .

[41]  J. M. Zaldívar,et al.  Runaway Detection in a Pilot-Plant Facility , 2004 .

[42]  Joseph P. Zbilut,et al.  Early warning detection of runaway initiation using non-linear approaches , 2005 .