The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein

[1]  Nicolas L. Fawzi,et al.  SARS‐CoV‐2 nucleocapsid protein phase‐separates with RNA and with human hnRNPs , 2020, The EMBO journal.

[2]  B. Blencowe,et al.  SARS-CoV-2 Nucleocapsid protein attenuates stress granule formation and alters gene expression via direct interaction with host mRNAs , 2020, bioRxiv.

[3]  D. Morgan,et al.  Phosphoregulation of Phase Separation by the SARS-CoV-2 N Protein Suggests a Biophysical Basis for its Dual Functions , 2020, Molecular Cell.

[4]  M. Trnka,et al.  SARS-CoV-2 nucleocapsid protein forms condensates with viral genomic RNA , 2020, bioRxiv.

[5]  K. Corbett,et al.  Architecture and self‐assembly of the SARS‐CoV‐2 nucleocapsid protein , 2020, Protein science : a publication of the Protein Society.

[6]  Ralf Bartenschlager,et al.  SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography , 2020, Nature Communications.

[7]  S. Cascarina,et al.  A proposed role for the SARS‐CoV‐2 nucleocapsid protein in the formation and regulation of biomolecular condensates , 2020, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[8]  M. Zweckstetter,et al.  Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerase-containing condensates , 2020, Nature Communications.

[9]  Maxwell I. Zimmerman,et al.  The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA , 2020, bioRxiv.

[10]  Chandra L. Theesfeld,et al.  Specific viral RNA drives the SARS CoV-2 nucleocapsid to phase separate , 2020, bioRxiv.

[11]  K. Corbett,et al.  Architecture and self-assembly of the SARS-CoV-2 nucleocapsid protein , 2020, bioRxiv.

[12]  Benjamin J. Polacco,et al.  A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug-Repurposing , 2020, Nature.

[13]  Zhigang Wu,et al.  Molecular Architecture of the SARS-CoV-2 Virus , 2020, Cell.

[14]  Xiaoxu Tian,et al.  Virus-Host Interactome and Proteomic Survey Reveal Potential Virulence Factors Influencing SARS-CoV-2 Pathogenesis , 2020, bioRxiv.

[15]  V. Uversky,et al.  Intrinsically disordered proteins of viruses: Involvement in the mechanism of cell regulation and pathogenesis , 2020, Progress in Molecular Biology and Translational Science.

[16]  M. Blackledge,et al.  Measles virus nucleo- and phosphoproteins form liquid-like phase-separated compartments that promote nucleocapsid assembly , 2020, Science Advances.

[17]  Meijuan Niu,et al.  Pan-retroviral Nucleocapsid-Mediated Phase Separation Regulates Genomic RNA Positioning and Trafficking , 2020, Cell reports.

[18]  E. Dong,et al.  An interactive web-based dashboard to track COVID-19 in real time , 2020, The Lancet Infectious Diseases.

[19]  Kai Zhao,et al.  A pneumonia outbreak associated with a new coronavirus of probable bat origin , 2020, Nature.

[20]  R. Parker,et al.  Norovirus infection results in eIF2α independent host translation shut-off and remodels the G3BP1 interactome evading stress granule formation , 2020, PLoS pathogens.

[21]  Jingjing Ren,et al.  G3BP1 inhibits RNA virus replication by positively regulating RIG-I-mediated cellular antiviral response , 2019, Cell Death & Disease.

[22]  M. Ulaşlı,et al.  Nucleocapsid Protein Recruitment to Replication-Transcription Complexes Plays a Crucial Role in Coronaviral Life Cycle , 2019, Journal of Virology.

[23]  Jiwon Woo,et al.  An in vivo cell-based assay for investigating the specific interaction between the SARS-CoV N-protein and its viral RNA packaging sequence , 2019, Biochemical and Biophysical Research Communications.

[24]  Qiuhong Wang,et al.  GTPase-activating protein-binding protein 1 (G3BP1) plays an antiviral role against porcine epidemic diarrhea virus , 2019, Veterinary Microbiology.

[25]  Hao Chi,et al.  A high-speed search engine pLink 2 with systematic evaluation for proteome-scale identification of cross-linked peptides , 2019, Nature Communications.

[26]  Lin Guo,et al.  Cytoplasmic TDP-43 De-mixing Independent of Stress Granules Drives Inhibition of Nuclear Import, Loss of Nuclear TDP-43, and Cell Death , 2019, Neuron.

[27]  M. Panas,et al.  Noroviruses subvert the core stress granule component G3BP1 to promote viral VPg-dependent translation , 2019, bioRxiv.

[28]  K. Lam,et al.  The stress granule protein G3BP1 binds viral dsRNA and RIG-I to enhance interferon-β response , 2019, The Journal of Biological Chemistry.

[29]  Shinji Makino,et al.  Inhibition of Stress Granule Formation by Middle East Respiratory Syndrome Coronavirus 4a Accessory Protein Facilitates Viral Translation, Leading to Efficient Virus Replication , 2018, Journal of Virology.

[30]  Anne-Claude Gingras,et al.  High-Density Proximity Mapping Reveals the Subcellular Organization of mRNA-Associated Granules and Bodies. , 2018, Molecular cell.

[31]  Gene W. Yeo,et al.  Context-Dependent and Disease-Specific Diversity in Protein Interactions within Stress Granules , 2018, Cell.

[32]  E. Martínez-Salas,et al.  G3BP1 interacts directly with the FMDV IRES and negatively regulates translation , 2017, The FEBS journal.

[33]  A. Deniz,et al.  Reentrant Phase Transition Drives Dynamic Substructure Formation in Ribonucleoprotein Droplets. , 2017, Angewandte Chemie.

[34]  Beata Turoňová,et al.  Efficient 3D-CTF correction for cryo-electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4 Å , 2017, Journal of structural biology.

[35]  Cathy L. Miller,et al.  Mammalian Orthoreovirus Factories Modulate Stress Granule Protein Localization by Interaction with G3BP1 , 2017, Journal of Virology.

[36]  Jiahui Chen,et al.  Improvements to the APBS biomolecular solvation software suite , 2017, Protein science : a publication of the Protein Society.

[37]  Sonja Kroschwald,et al.  Hexanediol: a chemical probe to investigate the material properties of membrane-less compartments , 2017 .

[38]  Y. Liao,et al.  Newcastle disease virus induces stable formation of bona fide stress granules to facilitate viral replication through manipulating host protein translation , 2017, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[39]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[40]  J. Briggs,et al.  Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging , 2017, Journal of structural biology.

[41]  Robert H. Brown,et al.  Decoding ALS: from genes to mechanism , 2016, Nature.

[42]  R. Parker,et al.  Principles and Properties of Stress Granules. , 2016, Trends in cell biology.

[43]  Ben Lehner,et al.  A Concentration-Dependent Liquid Phase Separation Can Cause Toxicity upon Increased Protein Expression , 2016, Cell reports.

[44]  C. A. Koetzner,et al.  Analyses of Coronavirus Assembly Interactions with Interspecies Membrane and Nucleocapsid Protein Chimeras , 2016, Journal of Virology.

[45]  Roy Parker,et al.  Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins. , 2015, Molecular cell.

[46]  A. Kanagaraj,et al.  Phase Separation by Low Complexity Domains Promotes Stress Granule Assembly and Drives Pathological Fibrillization , 2015, Cell.

[47]  Marco Y. Hein,et al.  A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation , 2015, Cell.

[48]  C. Brangwynne,et al.  The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics , 2015, Proceedings of the National Academy of Sciences.

[49]  M. V. van Hemert,et al.  Stress Granule Components G3BP1 and G3BP2 Play a Proviral Role Early in Chikungunya Virus Replication , 2015, Journal of Virology.

[50]  Colin W. Combe,et al.  xiNET: Cross-link Network Maps With Residue Resolution , 2015, Molecular & Cellular Proteomics.

[51]  Lucas C. Reineke,et al.  The Stress Granule Protein G3BP1 Recruits Protein Kinase R To Promote Multiple Innate Immune Antiviral Responses , 2014, Journal of Virology.

[52]  David T. Jones,et al.  DISOPRED3: precise disordered region predictions with annotated protein-binding activity , 2014, Bioinform..

[53]  Pei-Jer Chen,et al.  Nucleocapsid Phosphorylation and RNA Helicase DDX1 Recruitment Enables Coronavirus Transition from Discontinuous to Continuous Transcription , 2014, Cell Host & Microbe.

[54]  A. Hyman,et al.  Liquid-liquid phase separation in biology. , 2014, Annual review of cell and developmental biology.

[55]  B. Fielding,et al.  The Coronavirus Nucleocapsid Is a Multifunctional Protein , 2014, Viruses.

[56]  Hao Chi,et al.  pQuant improves quantitation by keeping out interfering signals and evaluating the accuracy of calculated ratios. , 2014, Analytical chemistry.

[57]  Honglin Luo,et al.  Production of a Dominant-Negative Fragment Due to G3BP1 Cleavage Contributes to the Disruption of Mitochondria-Associated Protective Stress Granules during CVB3 Infection , 2013, PloS one.

[58]  Tai-Huang Huang,et al.  Transient Oligomerization of the SARS-CoV N Protein – Implication for Virus Ribonucleoprotein Packaging , 2013, PloS one.

[59]  Cara T. Pager,et al.  Modulation of hepatitis C virus RNA abundance and virus release by dispersion of processing bodies and enrichment of stress granules. , 2013, Virology.

[60]  D. Giedroc,et al.  Solution Structure of Mouse Hepatitis Virus (MHV) nsp3a and Determinants of the Interaction with MHV Nucleocapsid (N) Protein , 2013, Journal of Virology.

[61]  T. Parisi,et al.  The Virion Host Shutoff RNase Plays a Key Role in Blocking the Activation of Protein Kinase R in Cells Infected with Herpes Simplex Virus 1 , 2013, Journal of Virology.

[62]  Lucas C. Reineke,et al.  Diversion of stress granules and P-bodies during viral infection , 2013, Virology.

[63]  Debasis Panda,et al.  Induction of Stress Granule-Like Structures in Vesicular Stomatitis Virus-Infected Cells , 2012, Journal of Virology.

[64]  F. Chisari,et al.  Hepatitis C Virus (HCV) Induces Formation of Stress Granules Whose Proteins Regulate HCV RNA Replication and Virus Assembly and Egress , 2012, Journal of Virology.

[65]  M. Dong,et al.  Identification of cross-linked peptides from complex samples , 2012, Nature Methods.

[66]  C. Brangwynne,et al.  Getting RNA and Protein in Phase , 2012, Cell.

[67]  Denys A. Khaperskyy,et al.  Influenza A virus inhibits cytoplasmic stress granule formation , 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[68]  N. Kato,et al.  Hepatitis C Virus Hijacks P-Body and Stress Granule Components around Lipid Droplets , 2011, Journal of Virology.

[69]  P. Anderson,et al.  Formation of Antiviral Cytoplasmic Granules during Orthopoxvirus Infection , 2010, Journal of Virology.

[70]  I. Wilson,et al.  A structural analysis of M protein in coronavirus assembly and morphology , 2010, Journal of Structural Biology.

[71]  P. Rottier,et al.  The Coronavirus Nucleocapsid Protein Is Dynamically Associated with the Replication-Transcription Complexes , 2010, Journal of Virology.

[72]  S. Whelan,et al.  Protein Expression Redirects Vesicular Stomatitis Virus RNA Synthesis to Cytoplasmic Inclusions , 2010, PLoS pathogens.

[73]  B. Chait,et al.  Host Factors Associated with the Sindbis Virus RNA-Dependent RNA Polymerase: Role for G3BP1 and G3BP2 in Virus Replication , 2010, Journal of Virology.

[74]  R. Parker,et al.  Eukaryotic stress granules: the ins and outs of translation. , 2009, Molecular cell.

[75]  I. Sola,et al.  Coronavirus Nucleocapsid Protein Facilitates Template Switching and Is Required for Efficient Transcription , 2009, Journal of Virology.

[76]  D. Giedroc,et al.  Coronavirus N Protein N-Terminal Domain (NTD) Specifically Binds the Transcriptional Regulatory Sequence (TRS) and Melts TRS-cTRS RNA Duplexes , 2009, Journal of Molecular Biology.

[77]  Ding‐Shinn Chen,et al.  Glycogen Synthase Kinase-3 Regulates the Phosphorylation of Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Protein and Viral Replication* , 2009, Journal of Biological Chemistry.

[78]  Abraham J. Koster,et al.  Cryo-electron tomography of mouse hepatitis virus: Insights into the structure of the coronavirion , 2009, Proceedings of the National Academy of Sciences.

[79]  Kuan-rong Lee,et al.  Phosphorylation of the arginine/serine dipeptide‐rich motif of the severe acute respiratory syndrome coronavirus nucleocapsid protein modulates its multimerization, translation inhibitory activity and cellular localization , 2008, The FEBS journal.

[80]  P. Anderson,et al.  Stress granules: the Tao of RNA triage. , 2008, Trends in biochemical sciences.

[81]  R. Lloyd,et al.  Inhibition of cytoplasmic mRNA stress granule formation by a viral proteinase. , 2007, Cell host & microbe.

[82]  C. M. Romero,et al.  Effect of temperature on the surface tension of diluted aqueous solutions of 1,2-hexanediol, 1,5-hexanediol, 1,6-hexanediol and 2,5-hexanediol , 2007 .

[83]  B. Hogue,et al.  Identification of mouse hepatitis coronavirus A59 nucleocapsid protein phosphorylation sites , 2007, Virus Research.

[84]  C. Hsiao,et al.  Structure of the SARS Coronavirus Nucleocapsid Protein RNA-binding Dimerization Domain Suggests a Mechanism for Helical Packaging of Viral RNA , 2007, Journal of Molecular Biology.

[85]  I. Mohr,et al.  Maintenance of Endoplasmic Reticulum (ER) Homeostasis in Herpes Simplex Virus Type 1-Infected Cells through the Association of a Viral Glycoprotein with PERK, a Cellular ER Stress Sensor , 2007, Journal of Virology.

[86]  I. Sola,et al.  Coronavirus nucleocapsid protein is an RNA chaperone , 2006, Virology.

[87]  Stuart G. Siddell,et al.  A Contemporary View of Coronavirus Transcription , 2006, Journal of Virology.

[88]  I. Yu,et al.  Crystal Structure of the Severe Acute Respiratory Syndrome (SARS) Coronavirus Nucleocapsid Protein Dimerization Domain Reveals Evolutionary Linkage between Corona- and Arteriviridae* , 2006, Journal of Biological Chemistry.

[89]  J. Onderwater,et al.  Ultrastructure and Origin of Membrane Vesicles Associated with the Severe Acute Respiratory Syndrome Coronavirus Replication Complex , 2006, Journal of Virology.

[90]  Tai-Huang Huang,et al.  Assembly of Severe Acute Respiratory Syndrome Coronavirus RNA Packaging Signal into Virus-Like Particles Is Nucleocapsid Dependent , 2005, Journal of Virology.

[91]  C. A. Koetzner,et al.  A Major Determinant for Membrane Protein Interaction Localizes to the Carboxy-Terminal Domain of the Mouse Coronavirus Nucleocapsid Protein , 2005, Journal of Virology.

[92]  Adam Zlotnick,et al.  Theoretical aspects of virus capsid assembly , 2005, Journal of molecular recognition : JMR.

[93]  Wei-Lun Chang,et al.  Modular organization of SARS coronavirus nucleocapsid protein , 2005, Journal of biomedical science.

[94]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[95]  Tai-Huang Huang,et al.  The dimer interface of the SARS coronavirus nucleocapsid protein adapts a porcine respiratory and reproductive syndrome virus‐like structure , 2005, FEBS Letters.

[96]  Hongying Chen,et al.  Mass Spectroscopic Characterization of the Coronavirus Infectious Bronchitis Virus Nucleoprotein and Elucidation of the Role of Phosphorylation in RNA Binding by Using Surface Plasmon Resonance , 2005, Journal of Virology.

[97]  A. Gunasekera,et al.  Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein. , 2004, Biochemistry.

[98]  V. Chow,et al.  The nucleocapsid protein of the SARS coronavirus is capable of self-association through a C-terminal 209 amino acid interaction domain , 2004, Biochemical and Biophysical Research Communications.

[99]  Alexander E Gorbalenya,et al.  Mechanisms and enzymes involved in SARS coronavirus genome expression. , 2003, The Journal of general virology.

[100]  Y. Guan,et al.  Unique and Conserved Features of Genome and Proteome of SARS-coronavirus, an Early Split-off From the Coronavirus Group 2 Lineage , 2003, Journal of Molecular Biology.

[101]  D. Görlich,et al.  The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion , 2002, The EMBO journal.

[102]  M. Gross,et al.  The Herpes Simplex Virus Type 1 US11 Protein Interacts with Protein Kinase R in Infected Cells and Requires a 30-Amino-Acid Sequence Adjacent to a Kinase Substrate Domain , 2002, Journal of Virology.

[103]  L. Enjuanes,et al.  The Membrane M Protein Carboxy Terminus Binds to Transmissible Gastroenteritis Coronavirus Core and Contributes to Core Stability , 2001, Journal of Virology.

[104]  B. Roizman,et al.  The γ134.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1α to dephosphorylate the α subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase , 1997 .

[105]  P. Masters Localization of an RNA-binding domain in the nucleocapsid protein of the coronavirus mouse hepatitis virus , 1992, Archives of Virology.

[106]  P. Masters,et al.  Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein , 1990, Virology.

[107]  R. Baric,et al.  Specific interaction between coronavirus leader RNA and nucleocapsid protein , 1988, Journal of virology.

[108]  H. Davies,et al.  Ribonucleoprotein of avian infectious bronchitis virus. , 1981, The Journal of general virology.

[109]  E. Caul,et al.  Coronavirus-like particles present in simian faeces , 1979, Veterinary Record.

[110]  H. Davies,et al.  Ribonucleoprotein-like structures from coronavirus particles. , 1978, The Journal of general virology.

[111]  S. Tahara,et al.  High affinity interaction between nucleocapsid protein and leader/intergenic sequence of mouse hepatitis virus RNA. , 2000, The Journal of general virology.

[112]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.