Identification of nonlinear block-oriented systems with backlash and saturation

Abstract A new approach to modeling and identification of discrete-time nonlinear dynamic systems with input backlash and output saturation nonlinearities is presented. The proposed three-block cascade mathematical model results from successive applications of the key-term separation principle. This provides special nonlinear model description that is linear in parameters. An iterative technique with internal variable estimation is proposed for estimation of all the model parameters based on measured input/output data and minimizing the least-squares criterion. Illustrative example of cascade system identification with backlash and saturation is included.

[1]  Zhizhong Mao,et al.  Adaptive control of Hammerstein–Wiener nonlinear systems , 2016, Int. J. Syst. Sci..

[2]  Sakti Prasad Ghoshal,et al.  Parametric Identification with Performance Assessment of Wiener Systems Using Brain Storm Optimization Algorithm , 2017, Circuits Syst. Signal Process..

[3]  Yonghong Tan,et al.  State estimation of a compound non-smooth sandwich system with backlash and dead zone , 2017 .

[4]  Grzegorz Mzyk,et al.  Instrumental variables for nonlinearity recovering in block-oriented systems driven by correlated signals , 2015, Int. J. Syst. Sci..

[5]  Feng Ding,et al.  Data filtering based forgetting factor stochastic gradient algorithm for Hammerstein systems with saturation and preload nonlinearities , 2016, J. Frankl. Inst..

[6]  Wei Chen,et al.  Hierarchical recursive least squares parameter estimation of non-uniformly sampled Hammerstein nonlinear systems based on Kalman filter , 2017, J. Frankl. Inst..

[7]  T. Pan,et al.  Identification of non-uniformly sampled Wiener systems with dead-zone non-linearities , 2017 .

[8]  L. Dewan,et al.  Instrument variable method based on nonlinear transformed instruments for Hammerstein system identification , 2018 .

[9]  Vito Cerone,et al.  Bounding the parameters of linear systems with input backlash , 2007, Proceedings of the 2005, American Control Conference, 2005..

[10]  Feng Ding,et al.  A filtering based multi-innovation gradient estimation algorithm and performance analysis for nonlinear dynamical systems , 2017 .

[11]  Guangjun Liu,et al.  Identification of Hammerstein systems using key-term separation principle, auxiliary model and improved particle swarm optimisation algorithm , 2013, IET Signal Process..

[12]  G. Mzyk,et al.  Direct identification of the linear block in Wiener system , 2016 .

[13]  J. Vörös Modelling and identification of nonlinear cascade systems with backlash input and static output nonlinearities , 2018, Mathematical and Computer Modelling of Dynamical Systems.

[14]  Fouad Giri,et al.  System identification of a class of Wiener systems with hysteretic nonlinearities , 2017 .

[15]  F. Ding,et al.  Decomposition-based least squares parameter estimation algorithm for input nonlinear systems using the key term separation technique , 2015 .

[16]  Jozef Vörös,et al.  Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities , 2007, Syst. Control. Lett..

[17]  Xiaoyu Huang,et al.  Identification of Ground Vehicle Steering System Backlash , 2013 .

[18]  Dakuo He,et al.  Recursive parameter estimation for Hammerstein-Wiener systems using modified EKF algorithm. , 2017, ISA transactions.

[19]  Jozef Vörös,et al.  Modeling and identification of systems with backlash , 2010, Autom..

[20]  Feng Ding,et al.  Decomposition based least squares iterative identification algorithm for multivariate pseudo-linear ARMA systems using the data filtering , 2017, J. Frankl. Inst..

[21]  F. Ding,et al.  Maximum likelihood Newton recursive and the Newton iterative estimation algorithms for Hammerstein CARAR systems , 2014 .

[22]  Andrzej Janczak,et al.  Instrumental variables approach to identification of a class of MIMO Wiener systems , 2007 .

[23]  Minglang Yin,et al.  Novel Wiener models with a time-delayed nonlinear block and their identification , 2016 .

[24]  Shaoxue Jing,et al.  Variable knot-based spline approximation recursive Bayesian algorithm for the identification of Wiener systems with process noise , 2017 .

[25]  Feng Ding,et al.  Filtering-Based Multistage Recursive Identification Algorithm for an Input Nonlinear Output-Error Autoregressive System by Using the Key Term Separation Technique , 2017, Circuits Syst. Signal Process..

[26]  Jozef Vörös,et al.  Iterative algorithm for parameter identification of Hammerstein systems with two-segment nonlinearities , 1999, IEEE Trans. Autom. Control..

[27]  Feng Ding,et al.  Hierarchical multi-innovation extended stochastic gradient algorithms for input nonlinear multivariable OEMA systems by the key-term separation principle , 2016 .

[28]  Xuemei Ren,et al.  Modified multi-innovation stochastic gradient algorithm for Wiener-Hammerstein systems with backlash , 2018, J. Frankl. Inst..

[29]  Jozef Vörös,et al.  Identification of nonlinear dynamic systems with input saturation and output backlash using three-block cascade models , 2014, J. Frankl. Inst..

[30]  Jozef Vörös Parametric Identification of Systems with General Backlash , 2012, Informatica.

[31]  Yonghong Tan,et al.  On-line identification algorithm and convergence analysis for sandwich systems with backlash , 2011 .

[32]  Feng Ding,et al.  Combined state and multi-innovation parameter estimation for an input non-linear state-space system using the key term separation , 2016 .

[33]  Fouad Giri,et al.  Identification of Hammerstein systems in presence of hysteresis-backlash and hysteresis-relay nonlinearities , 2008, Autom..

[34]  Er-Wei Bai,et al.  Generalized Wiener system identification: General backlash nonlinearity and finite impulse response linear part , 2014 .

[35]  Lennart Ljung,et al.  Theory and Practice of Recursive Identification , 1983 .

[36]  M. Chidambaram,et al.  Computer Control of Processes , 2001 .

[37]  C. L. Philip Chen,et al.  Adaptive inverse compensation for actuator backlash with piecewise time-varying parameters , 2018, Int. J. Control.

[38]  Yan Wang,et al.  A Multi-innovation Recursive Least Squares Algorithm with a Forgetting Factor for Hammerstein CAR Systems with Backlash , 2016, Circuits Syst. Signal Process..

[39]  J. Voros AN ITERATIVE METHOD FOR HAMMERSTEIN-WIENER SYSTEMS PARAMETER IDENTIFICATION , 2004 .

[40]  Brett Ninness,et al.  Generalised Hammerstein–Wiener system estimation and a benchmark application , 2012 .

[41]  Fouad Giri,et al.  Combined frequency-prediction error identification approach for Wiener systems with backlash and backlash-inverse operators , 2014, Autom..

[42]  Xuemei Ren,et al.  Decomposition-based recursive least-squares parameter estimation algorithm for Wiener-Hammerstein systems with dead-zone nonlinearity , 2017, Int. J. Syst. Sci..

[43]  Kazys Kazlauskas,et al.  On Intelligent Extraction of an Internal Signal in a Wiener System Consisting of a Linear Block Followed by Hard-Nonlinearity , 2013, Informatica.

[44]  Zygmunt Hasiewicz,et al.  On Nonparametric Identification of Wiener Systems , 2007, IEEE Transactions on Signal Processing.

[45]  Hugues Garnier,et al.  Refined instrumental variable method for Hammerstein-Wiener continuous-time model identification , 2013 .

[46]  Feng Ding,et al.  The recursive least squares identification algorithm for a class of Wiener nonlinear systems , 2016, J. Frankl. Inst..

[47]  F. Ding,et al.  Newton iterative identification method for an input nonlinear finite impulse response system with moving average noise using the key variables separation technique , 2014, Nonlinear Dynamics.

[48]  Er-Wei Bai,et al.  A blind approach to the Hammerstein-Wiener model identification , 2002, Autom..

[49]  Jozef Vörös Modeling and Identification of Nonlinear Cascade and Sandwich Systems with General Backlash , 2014 .

[50]  Ruifeng Ding,et al.  Gradient-based iterative algorithm for Wiener systems with saturation and dead-zone nonlinearities , 2014 .