Logical Characterizations of Bounded Query Classes II: Polynomial-Time Oracle Machines

We have shown that the logics (±HP)*[FOS] and (±HP)1[FOS] are of the same expressibility, and both capture P∥ NP . This result gives us the weakest possible hint that it might be wiser to try and show that (±STC*[FOS] collapses to (±STC)1[FOS] as opposed to trying to show that STC1[FOS] is closed under complementation: an attempt to use the methods of [Imm88] to achieve this latter result has failed (see [BCD89]).

[1]  Iain A. Stewart,et al.  Logical Characterizations of Bounded Query Classes I: Logspace Oracle Machines , 1992, Fundam. Informaticae.

[2]  Klaus W. Wagner,et al.  Bounded Query Classes , 1990, SIAM J. Comput..

[3]  Samuel R. Buss,et al.  On truth-table reducibility to SAT and the difference hierarchy over NP , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[4]  Iain A. Stewart,et al.  Using the Hamiltonian Path Operator to Capture NP , 1990, J. Comput. Syst. Sci..

[5]  Neil Immerman,et al.  Languages that Capture Complexity Classes , 1987, SIAM J. Comput..

[6]  Juris Hartmanis,et al.  The Boolean Hierarchy II: Applications , 1989, SIAM J. Comput..

[7]  Allan Borodin,et al.  Two Applications of Inductive Counting for Complementation Problems , 1989, SIAM J. Comput..

[8]  Neil Immerman Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..

[9]  Iain A. Stewart,et al.  Comparing the Expressibility of Languages Formed using NP-Complete Operators , 1991, J. Log. Comput..

[10]  Klaus W. Wagner,et al.  The Difference and Truth-Table Hierarchies for NP , 1987, RAIRO Theor. Informatics Appl..

[11]  Iain A. Stewart Complete Problems Involving Boolean Labelled Structures and Projection Transactions , 1991, J. Log. Comput..

[12]  Iain A. Stewart,et al.  Complete Problems Involving Boolean Labelled Structures and Projections Translations , 1991, Foundations of Software Technology and Theoretical Computer Science.

[13]  Juris Hartmanis,et al.  The Boolean Hierarchy I: Structural Properties , 1988, SIAM J. Comput..

[14]  R. Beigel,et al.  Bounded Queries to SAT and the Boolean Hierarchy , 1991, Theor. Comput. Sci..