Mesoscale model for fission-induced recrystallization in U-7Mo alloy

[1]  M. Anitescu,et al.  Grain growth in U-7Mo alloy: A combined first-principles and phase field study , 2016 .

[2]  J. Almer,et al.  High-Energy Synchrotron Study of In-Pile-Irradiated U-Mo Fuels , 2016 .

[3]  K. Thornton,et al.  Simulating recrystallization in titanium using the phase field method , 2015 .

[4]  J. Hoyt,et al.  Relationship Between Recrystallization Kinetics and the Inhomogeneity of Stored Energy , 2015, Metallurgical and Materials Transactions A.

[5]  D. Keiser,et al.  Transmission electron microscopy characterization of the fission gas bubble superlattice in irradiated U-7 wt%Mo dispersion fuels , 2015 .

[6]  B. Nestler,et al.  Combined crystal plasticity and phase-field method for recrystallization in a process chain of sheet metal production , 2015 .

[7]  K. Lee,et al.  In-pile test results of U-silicide or U-nitride coated U-7Mo particle dispersion fuel in Al , 2014 .

[8]  Markus Bambach,et al.  Coupling of Crystal Plasticity Finite Element and Phase Field Methods for the Prediction of SRX Kinetics after Hot Working , 2014 .

[9]  K. Shizawa,et al.  Phase-field simulation of static recrystallization considering nucleation from subgrains and nucleus growth with incubation period , 2014 .

[10]  B. Tang,et al.  Static recrystallization simulations by coupling cellular automata and crystal plasticity finite element method using a physically based model for nucleation , 2014, Journal of Materials Science.

[11]  R. Stoller,et al.  On the use of SRIM for computing radiation damage exposure , 2013 .

[12]  Ingo Steinbach,et al.  Phase-Field Model for Microstructure Evolution at the Mesoscopic Scale , 2013 .

[13]  Y. Kim,et al.  Recrystallization and fission-gas-bubble swelling of U–Mo fuel , 2013 .

[14]  L. Madej,et al.  A perceptive comparison of the cellular automata and Monte Carlo techniques in application to static recrystallization modeling in polycrystalline materials , 2013 .

[15]  M. Militzer,et al.  3D phase field modelling of recrystallization in a low-carbon steel , 2012 .

[16]  Reza Darvishi Kamachali,et al.  3-D phase-field simulation of grain growth: Topological analysis versus mean-field approximations , 2012 .

[17]  J. Ziegler,et al.  SRIM – The stopping and range of ions in matter (2010) , 2010 .

[18]  T. Takaki,et al.  Static recrystallization simulations starting from predicted deformation microstructure by coupling multi-phase-field method and finite element method based on crystal plasticity , 2010 .

[19]  Gang Wang,et al.  A Phase-field Model to Simulate Recrystallization in an AZ31 Mg Alloy in Comparison of Experimental Data , 2009 .

[20]  Britta Nestler,et al.  Comparative study of two phase-field models for grain growth , 2009 .

[21]  Akinori Yamanaka,et al.  Multi-phase-field simulations for dynamic recrystallization , 2009 .

[22]  J. Rest,et al.  Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium–molybdenum alloy fuel , 2009 .

[23]  H. Onodera,et al.  Phase-field simulation of recrystallization based on the unified subgrain growth theory , 2008 .

[24]  T. Takaki,et al.  Multi-Phase-Field Model to Simulate Microstructure Evolutions during Dynamic Recrystallization , 2008 .

[25]  Bart Blanpain,et al.  Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems , 2008 .

[26]  Akinori Yamanaka,et al.  Phase-field model during static recrystallization based on crystal-plasticity theory , 2007 .

[27]  M. Haataja,et al.  Recrystallization kinetics: A coupled coarse-grained dislocation density and phase-field approach , 2007 .

[28]  Hidehiro Onodera,et al.  Phase field simulation of stored energy driven interface migration at a recrystallization front , 2007 .

[29]  Won Tae Kim,et al.  Computer simulations of two-dimensional and three-dimensional ideal grain growth. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  R. Turk,et al.  Study of the influence of initial microstructure topology on the kinetics of static recrystallization using a cellular automata model , 2006 .

[31]  J. Rest Derivation of analytical expressions for the network dislocation density, change in lattice parameter, and for the recrystallized grain size in nuclear fuels , 2006 .

[32]  J. Rest,et al.  A model for the effect of the progression of irradiation-induced recrystallization from initiation to completion on swelling of UO2 and U-10Mo nuclear fuels , 2005 .

[33]  J. Rest,et al.  A model for the influence of microstructure, precipitate pinning and fission gas behavior on irradiation-induced recrystallization of nuclear fuels☆ , 2004 .

[34]  Mark Miodownik,et al.  On abnormal subgrain growth and the origin of recrystallization nuclei , 2002 .

[35]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[36]  Y. Jung,et al.  An attempt to explain the high burnup structure formation mechanism in UO2 fuel , 2000 .

[37]  Gerard L. Hofman,et al.  An alternative explanation for evidence that xenon depletion, pore formation, and grain subdivision begin at different local burnups , 2000 .

[38]  Jie Shen,et al.  Applications of semi-implicit Fourier-spectral method to phase field equations , 1998 .

[39]  M. Kinoshita Towards the mathematical model of rim structure formation , 1997 .

[40]  F. J. Humphreys,et al.  Recrystallization and Related Annealing Phenomena , 1995 .

[41]  J. Rest,et al.  Dynamics of irradiation-induced grain subdivision and swelling in U3Si2 and UO2 fuels☆ , 1994 .

[42]  Kazuhiro Nogita,et al.  Radiation-induced microstructural change in high burnup UO2 fuel pellets , 1994 .

[43]  F. J. Humphreys A network model for recovery and recrystallisation , 1992 .

[44]  H. Matzke,et al.  On the rim effect in high burnup UO2LWR fuels , 1992 .

[45]  L. E. Thomas,et al.  Microstructural analysis of LWR spent fuels at high burnup , 1992 .

[46]  L. Ryde,et al.  On the kinetics of recrystallisation in cold worked metals , 1989 .

[47]  F. J. Humphreys The nucleation of recrystallization at second phase particles in deformed aluminium , 1977 .

[48]  E. P. Quijorna Nuclear instruments and methods in physics research section B: Beam interactions with materials and atoms , 2024, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms.

[49]  Louis G. Birta,et al.  Modelling and Simulation , 2013, Simulation Foundations, Methods and Applications.