Error analysis of the transport properties of Metropolized schemes

We consider in this work the numerical computation of transport coefficients for Brownian dynamics. We investigate the discretization error arising when simulating the dynamics with the Smart MC algorithm (also known as Metropolis-adjusted Langevin algorithm). We prove that the error is of order one in the time step, when using either the Green-Kubo or the Einstein formula to estimate the transport coefficients. We illustrate our results with numerical simulations.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[3]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[4]  J. D. Doll,et al.  Brownian dynamics as smart Monte Carlo simulation , 1978 .

[5]  S. Olla Homogenization of di usion processes in random fields , 1994 .

[6]  R. Tweedie,et al.  Exponential convergence of Langevin distributions and their discrete approximations , 1996 .

[7]  David M. Heyes,et al.  MONTE CARLO AS BROWNIAN DYNAMICS , 1998 .

[8]  Olivier Bernard,et al.  Transport coefficients of electrolyte solutions from Smart Brownian dynamics simulations , 1999 .

[9]  Jonathan C. Mattingly,et al.  Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .

[10]  M. V. Tretyakov,et al.  Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.

[11]  Marie Jardat,et al.  Modélisation brownienne des solutions , 2005 .

[12]  E. Vanden-Eijnden,et al.  Pathwise accuracy and ergodicity of metropolized integrators for SDEs , 2009, 0905.4218.

[13]  T. Lelièvre,et al.  Free Energy Computations: A Mathematical Perspective , 2010 .

[14]  E. Vanden-Eijnden,et al.  Non-asymptotic mixing of the MALA algorithm , 2010, 1008.3514.

[15]  Jonathan C. Mattingly,et al.  Yet Another Look at Harris’ Ergodic Theorem for Markov Chains , 2008, 0810.2777.

[16]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[17]  Nawaf Bou-Rabee,et al.  A patch that imparts unconditional stability to explicit integrators for Langevin-like equations , 2012, J. Comput. Phys..

[18]  Aleksandar Donev,et al.  Metropolis Integration Schemes for Self-Adjoint Diffusions , 2013, Multiscale Model. Simul..

[19]  B. Leimkuhler,et al.  The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics , 2013, 1308.5814.