Extension and source/drain design for high-performance FinFET devices

Double gate devices based upon the FinFET architecture are fabricated, with gate lengths as small as 30 nm. Particular attention is given to minimizing the parasitic series resistance. Angled extension implants and selective silicon epitaxy are investigated as methods for minimizing parasitic resistance in FinFETs. Using these two techniques high performance devices are fabricated with on-currents comparable to fully optimized bulk silicon technologies. The influence of fin thickness on device resistance and short channel effects is discussed in detail. Devices are fabricated with fins oriented in the and directions showing different transport properties.

[1]  T. Sugii,et al.  Analytical threshold voltage model for short channel double-gate SOI MOSFETs , 1996 .

[2]  T. Ohguro,et al.  0.12 /spl mu/m raised gate/source/drain epitaxial channel NMOS technology , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[3]  C. Hu,et al.  Nanoscale CMOS spacer FinFET for the terabit era , 2002 .

[4]  C. Hu,et al.  Design analysis of thin-body silicide source/drain devices , 2001, 2001 IEEE International SOI Conference. Proceedings (Cat. No.01CH37207).

[5]  J. Sleight,et al.  Sub-60 nm physical gate length SOI CMOS , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[6]  Chenming Hu,et al.  Sub 50-nm FinFET: PMOS , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[7]  David J. Frank,et al.  Nanoscale CMOS , 1999, Proc. IEEE.

[8]  Ichiro Mizushima,et al.  Source/drain engineering for sub-100 nm CMOS using selective epitaxial growth technique , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[9]  Chenming Hu,et al.  Sub-20 nm CMOS FinFET technologies , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[10]  Chenming Hu,et al.  A folded-channel MOSFET for deep-sub-tenth micron era , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[11]  M. Hussein,et al.  A 130 nm generation logic technology featuring 70 nm transistors, dual Vt transistors and 6 layers of Cu interconnects , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).