Advances in binder identification and characterisation: the case of oligonucleotide aptamers.

Aptamers represent an important class of synthetic protein binders useful for proteome-wide applications. The identification and characterisation of such molecules have been greatly facilitated by the development of Systematic Evolution of Ligands by Exponential Amplification (SELEX). Since then numerous advances and alternatives to improve efficient aptamer discovery have been reported. In the present manuscript we discuss the recent advances performed around the SELEX approach that may help to expand the availability of new aptamers and the subsequent applications that may be developed.

[1]  Andrea Rentmeister,et al.  Cell-Specific Aptamers as Emerging Therapeutics , 2011, Journal of nucleic acids.

[2]  Eric Chevet,et al.  HAPIscreen, a method for high-throughput aptamer identification , 2011, Journal of nanobiotechnology.

[3]  Sergey N Krylov,et al.  Non-SELEX: selection of aptamers without intermediate amplification of candidate oligonucleotides , 2006, Nature Protocols.

[4]  Sophie Dahan,et al.  Current Screens Based on the AlphaScreen™ Technology for Deciphering Cell Signalling Pathways , 2009, Current genomics.

[5]  Rachel Ostroff,et al.  Photoaptamer arrays applied to multiplexed proteomic analysis , 2004, Proteomics.

[6]  Michael Famulok,et al.  Aptamers for allosteric regulation. , 2011, Nature chemical biology.

[7]  上官棣华 Development of DNA aptamers using Cell-SELEX , 2010 .

[8]  F. Ducongé,et al.  Aptamers against extracellular targets for in vivo applications. , 2005, Biochimie.

[9]  Victor Okhonin,et al.  Selection of smart aptamers by methods of kinetic capillary electrophoresis. , 2006, Analytical chemistry.

[10]  Andreas Nitsche,et al.  One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX , 2007, BMC biotechnology.

[11]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[12]  C. Di Primo,et al.  NMR structure of a kissing complex formed between the TAR RNA element of HIV-1 and a LNA-modified aptamer , 2007, Nucleic acids research.

[13]  Gerald F. Joyce,et al.  Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA , 1990, Nature.

[14]  Michael Famulok,et al.  Intramers and Aptamers: Applications in Protein‐Function Analyses and Potential for Drug Screening , 2005, Chembiochem : a European journal of chemical biology.

[15]  J. Toulmé,et al.  Aptamers: a new class of oligonucleotides in the drug discovery pipeline? , 2009, Current opinion in pharmacology.

[16]  H Zhang,et al.  Automated in vitro selection to obtain functional oligonucleotides. , 2000, Nucleic acids symposium series.

[17]  M. Willis,et al.  Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers. , 2000, Journal of biotechnology.

[18]  Weihong Tan,et al.  Aptamers selected by cell-SELEX for application in cancer studies. , 2010, Bioanalysis.

[19]  Tracy R. Keeney,et al.  Aptamer-based multiplexed proteomic technology for biomarker discovery , 2010, Nature Precedings.

[20]  J. König,et al.  Combining SELEX and the yeast three-hybrid system for in vivo selection and classification of RNA aptamers. , 2007, RNA.

[21]  R. Palmer,et al.  Modification of thiol functionalized aptamers by conjugation of synthetic polymers. , 2010, Bioconjugate chemistry.

[22]  Seung Soo Oh,et al.  Quantitative selection of DNA aptamers through microfluidic selection and high-throughput sequencing , 2010, Proceedings of the National Academy of Sciences.

[23]  Joshua E. Smith,et al.  Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. , 2007, Analytical chemistry.

[24]  Dinshaw J. Patel,et al.  A multivalent DNA aptamer specific for the B-cell receptor on human lymphoma and leukemia , 2010, Nucleic acids research.

[25]  Xiao-lian Zhang,et al.  CS-SELEX Generates High-Affinity ssDNA Aptamers as Molecular Probes for Hepatitis C Virus Envelope Glycoprotein E2 , 2009, PloS one.

[26]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[27]  J C Cox,et al.  Automated selection of anti-protein aptamers. , 2001, Bioorganic & medicinal chemistry.

[28]  M. Rimmele Nucleic Acid Aptamers as Tools and Drugs: Recent Developments , 2003, Chembiochem : a European journal of chemical biology.

[29]  J. Bajorath,et al.  Aptamer displacement identifies alternative small-molecule target sites that escape viral resistance. , 2007, Chemistry & biology.

[30]  Doris Chen,et al.  Monitoring Genomic Sequences during SELEX Using High-Throughput Sequencing: Neutral SELEX , 2010, PloS one.

[31]  Michael Musheev,et al.  Non-SELEX selection of aptamers. , 2006, Journal of the American Chemical Society.

[32]  Clive Brown,et al.  Toward clinical proteomics on a next-generation sequencing platform. , 2011, Analytical chemistry.

[33]  G. Connell,et al.  An electrochemiluminescent aptamer switch for a high-throughput assay of an RNA editing reaction. , 2009, RNA.

[34]  Won Jun Kang,et al.  Multiplex imaging of single tumor cells using quantum-dot-conjugated aptamers. , 2009, Small.

[35]  D. Gorenstein,et al.  Strategies for the discovery of therapeutic aptamers , 2011, Expert opinion on drug discovery.

[36]  Moon-Ho Jo,et al.  The fabrication, characterization and application of aptamer-functionalized Si-nanowire FET biosensors , 2009, Nanotechnology.

[37]  J. Toulmé,et al.  SELEX and dynamic combinatorial chemistry interplay for the selection of conjugated RNA aptamers. , 2006, Organic & biomolecular chemistry.

[38]  Katsunori Horii,et al.  Antibody-specific aptamer-based PCR analysis for sensitive protein detection , 2009, Analytical and bioanalytical chemistry.

[39]  Michael Famulok,et al.  Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures , 2010, Nature Protocols.

[40]  S. Klußmann,et al.  Development of an automated in vitro selection protocol to obtain RNA-based aptamers: identification of a biostable substance P antagonist , 2005, Nucleic acids research.

[41]  D. Guyer,et al.  Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease , 2006, Nature Reviews Drug Discovery.

[42]  F. Ducongé,et al.  Metastasis‐focused cell‐based SELEX generates aptamers inhibiting cell migration and invasion , 2011, International journal of cancer.

[43]  Sergey N. Krylov,et al.  Kinetic capillary electrophoresis-based affinity screening of aptamer clones. , 2009, Analytica chimica acta.

[44]  K. Kaneko,et al.  Screening of DNA Aptamer Against Mouse Prion Protein by Competitive Selection , 2007, Prion.

[45]  Gwendolyn M. Stovall,et al.  Technical and biological issues relevant to cell typing with aptamers. , 2009, Journal of proteome research.

[46]  G. Mayer,et al.  Aptamers in Research and Drug Development , 2012, BioDrugs.

[47]  Hanoch Senderowitz,et al.  SeleX-CS: A New Consensus Scoring Algorithm for Hit Discovery and Lead Optimization , 2009, J. Chem. Inf. Model..

[48]  Stephen A. Williams,et al.  Unlocking Biomarker Discovery: Large Scale Application of Aptamer Proteomic Technology for Early Detection of Lung Cancer , 2010, PloS one.