A Brooks' Theorem for Triangle-Free Graphs

Let G be a triangle-free graph with maximum degree \delta(G). We show that the chromatic number \c{hi}(G) is less than 67(1 + o(1))\delta/ log \delta.

[1]  N. Alon,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2004 .

[2]  Paul A. Catlin A bound on the chromatic number of a graph , 1978, Discret. Math..

[3]  B. Reed Graph Colouring and the Probabilistic Method , 2001 .

[4]  V. G. Vizing SOME UNSOLVED PROBLEMS IN GRAPH THEORY , 1968 .

[5]  Michael Molloy,et al.  The analysis of a list-coloring algorithm on a random graph , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[6]  Vojtech Rödl,et al.  Near Perfect Coverings in Graphs and Hypergraphs , 1985, Eur. J. Comb..

[7]  Alexandr V. Kostochka,et al.  On an upper bound of a graph's chromatic number, depending on the graph's degree and density , 1977, J. Comb. Theory B.

[8]  Subhash Khot,et al.  Improved inapproximability results for MaxClique, chromatic number and approximate graph coloring , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[9]  Joel H. Spencer,et al.  Asymptotic behavior of the chromatic index for hypergraphs , 1989, J. Comb. Theory, Ser. A.

[10]  János Komlós,et al.  A Dense Infinite Sidon Sequence , 1981, Eur. J. Comb..

[11]  Jim Lawrence Covering the vertex set of a graph with subgraphs of smaller degree , 1978, Discret. Math..

[12]  R. L. Brooks On Colouring the Nodes of a Network , 1941 .

[13]  Jeong Han Kim,et al.  The Ramsey Number R(3, t) Has Order of Magnitude t2/log t , 1995, Random Struct. Algorithms.

[14]  N. Wormald Differential Equations for Random Processes and Random Graphs , 1995 .

[15]  Béla Bollobás Chromatic number, girth and maximal degree , 1978, Discret. Math..

[16]  Jeff Kahn,et al.  Coloring Nearly-Disjoint Hypergraphs with n+o(n) Colors , 1992, J. Comb. Theory, Ser. A.

[17]  A. V. Kostov cka,et al.  An estimate in the theory of graph coloring , 1977 .

[18]  Noga Alon,et al.  Coloring Graphs with Sparse Neighborhoods , 1999, J. Comb. Theory B.

[19]  Jeong Han Kim On Brooks' Theorem for Sparse Graphs , 1995, Comb. Probab. Comput..

[20]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[21]  Penny Haxell,et al.  A Note on Vertex List Colouring , 2001, Combinatorics, Probability and Computing.

[22]  Van H. Vu,et al.  A General Upper Bound on the List Chromatic Number of Locally Sparse Graphs , 2002, Combinatorics, Probability and Computing.