Hybrid Nanostructures for Energy Storage Applications

Materials engineering plays a key role in the field of energy storage. In particular, engineering materials at the nanoscale offers unique properties resulting in high performance electrodes and electrolytes in various energy storage devices. Consequently, considerable efforts have been made in recent years to fulfill the future requirements of electrochemical energy storage using these advanced materials. Various multi‐functional hybrid nanostructured materials are currently being studied to improve energy and power densities of next generation storage devices. This review describes some of the recent progress in the synthesis of different types of hybrid nanostructures using template assisted and non‐template based methods. The potential applications and recent research efforts to utilize these hybrid nanostructures to enhance the electrochemical energy storage properties of Li‐ion battery and supercapacitor are discussed. This review also briefly outlines some of the recent progress and new approaches being explored in the techniques of fabrication of 3D battery structures using hybrid nanoarchitectures.

[1]  P. Ajayan,et al.  3D nanoporous nanowire current collectors for thin film microbatteries. , 2012, Nano letters.

[2]  Yang Liu,et al.  Electrolyte stability determines scaling limits for solid-state 3D Li ion batteries. , 2011, Nano letters.

[3]  Stanislaus S. Wong,et al.  Ambient surfactantless synthesis, growth mechanism, and size-dependent electrocatalytic behavior of high-quality, single crystalline palladium nanowires. , 2011, ACS nano.

[4]  Bruce Dunn,et al.  Three-dimensional electrodes and battery architectures , 2011 .

[5]  M. Roberts,et al.  Conformal electrodeposition of manganese dioxide onto reticulated vitreous carbon for 3D microbattery applications , 2011 .

[6]  K. Edström,et al.  3D lithium ion batteries{from fundamentals to fabrication , 2011 .

[7]  Jian Wang,et al.  Nanostructured silicon electrodes for solid-state 3-d rechargeable lithium batteries , 2011 .

[8]  Paul V. Braun,et al.  Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. , 2011, Nature nanotechnology.

[9]  Xiaofei Yang,et al.  Templated-assisted one-dimensional silica nanotubes: synthesis and applications , 2011 .

[10]  Christopher P. Rhodes,et al.  Architectural integration of the components necessary for electrical energy storage on the nanoscale and in 3D. , 2011, Nanoscale.

[11]  Barbara Karn,et al.  Viable methodologies for the synthesis of high-quality nanostructures , 2011 .

[12]  Phl Peter Notten,et al.  All‐Solid‐State Lithium‐Ion Microbatteries: A Review of Various Three‐Dimensional Concepts , 2011 .

[13]  Menachem Nathan,et al.  Novel porous-silicon structures for 3D-interlaced microbatteries , 2010 .

[14]  Pierre-Louis Taberna,et al.  Nanoarchitectured 3D Cathodes for Li‐Ion Microbatteries , 2010, Advanced materials.

[15]  Stanislaus S. Wong,et al.  Solution-based synthetic strategies for one-dimensional metal-containing nanostructures. , 2010, Chemical communications.

[16]  Sanden van de Mcm,et al.  (Invited) All-Solid-State Batteries: A Challenging Route towards 3D Integration , 2010 .

[17]  B. Hwang,et al.  Direct growth of high-rate capability and high capacity copper sulfide nanowire array cathodes for lithium-ion batteries , 2010 .

[18]  T. Gustafsson,et al.  Electrodeposited Cu_2Sb as anode material for 3-dimensional Li-ion microbatteries , 2010 .

[19]  Ran Liu,et al.  Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage. , 2010, ACS nano.

[20]  Chang Liu,et al.  Advanced Materials for Energy Storage , 2010, Advanced materials.

[21]  Ran Liu,et al.  Synthesis and characterization of RuO(2)/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors. , 2010, Physical chemistry chemical physics : PCCP.

[22]  M. Fujita,et al.  Template synthesis of precisely monodisperse silica nanoparticles within self-assembled organometallic spheres. , 2010, Nature chemistry.

[23]  Xuejie Huang,et al.  Research on Advanced Materials for Li‐ion Batteries , 2009 .

[24]  Yen Wei,et al.  One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. , 2009, Small.

[25]  S. Greenbaum,et al.  Multifunctional MnO2−Carbon Nanoarchitectures Exhibit Battery and Capacitor Characteristics in Alkaline Electrolytes , 2009 .

[26]  Timothy A. Whitehead,et al.  Biotemplated metal nanowires using hyperthermophilic protein filaments. , 2009, Small.

[27]  P. Ajayan,et al.  A general synthetic approach to interconnected nanowire/nanotube and nanotube/nanowire/nanotube heterojunctions with branched topology. , 2009, Angewandte Chemie.

[28]  Joachim Maier,et al.  Lithium Storage in Carbon Nanostructures , 2009, Advanced materials.

[29]  T. Gustafsson,et al.  Self-supported three-dimensional nanoelectrodes for microbattery applications. , 2009, Nano letters.

[30]  Chen Feng,et al.  Cross‐Stacked Carbon Nanotube Sheets Uniformly Loaded with SnO2 Nanoparticles: A Novel Binder‐Free and High‐Capacity Anode Material for Lithium‐Ion Batteries , 2009 .

[31]  Min Gyu Kim,et al.  Reversible and High‐Capacity Nanostructured Electrode Materials for Li‐Ion Batteries , 2009 .

[32]  Bozhi Tian,et al.  Coaxial Group Iii#nitride Nanowire Photovoltaics , 2009 .

[33]  J.F.M. Oudenhoven,et al.  On the electrochemistry of an anode stack for all-solid-state 3D-integrated batteries , 2009 .

[34]  Pierre-Louis Taberna,et al.  High rate capability pure Sn-based nano-architectured electrode assembly for rechargeable lithium batteries , 2009 .

[35]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[36]  Caofeng Pan,et al.  The syntheses, properties and applications of Si, ZnO, metal, and heterojunction nanowires , 2009 .

[37]  Arava Leela Mohana Reddy,et al.  Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. , 2009, Nano letters.

[38]  X. Bai,et al.  Synthesis of Carbon/Carbon Core/Shell Nanotubes with a High Specific Surface Area , 2009 .

[39]  Charles M. Lieber,et al.  Single nanowire photovoltaics. , 2009, Chemical Society reviews.

[40]  Justin C. Lytle,et al.  Multifunctional 3D nanoarchitectures for energy storage and conversion. , 2009, Chemical Society reviews.

[41]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[42]  D. Xia,et al.  One-Pot Synthesis of Carbon Nanotube@SnO2−Au Coaxial Nanocable for Lithium-Ion Batteries with High Rate Capability , 2008 .

[43]  P. Taberna,et al.  Electrophoretic silica-coating process on a nano-structured copper electrode. , 2008, Chemical communications.

[44]  T. Gustafsson,et al.  Direct electrodeposition of aluminium nano-rods , 2008 .

[45]  Haoshen Zhou,et al.  The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. , 2008, Angewandte Chemie.

[46]  M. Hughes,et al.  Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia , 2008, Proceedings of the National Academy of Sciences.

[47]  H. Ahn,et al.  Honeycomb pattern array of vertically standing core-shell nanorods : Its application to Li energy electrodes , 2008 .

[48]  Zhennan Gu,et al.  Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. , 2008, Nano letters.

[49]  Wei Zeng,et al.  Fabrication and Electrochemical Properties of Three-Dimensional Structure of LiCoO2 Fibers , 2008 .

[50]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[51]  Shaojun Dong,et al.  Constructing carbon-nanotube/metal hybrid nanostructures using homogeneous TiO2 as a spacer. , 2008, Small.

[52]  Hong Liang,et al.  Microwave synthesis of electrically conductive gold nanowires on DNA scaffolds. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[53]  M. Cao,et al.  High capacity and excellent cycling stability of single-walled carbon nanotube/SnO2 core-shell structures as Li-insertion materials , 2008 .

[54]  Lijie Ci,et al.  Synthesis of hybrid nanowire arrays and their application as high power supercapacitor electrodes. , 2008, Chemical communications.

[55]  Chunlei Wang,et al.  Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery , 2008 .

[56]  Bin Wang,et al.  Preparation of Nanowire Arrays of Amorphous Carbon Nanotube-Coated Single Crystal SnO2 , 2008 .

[57]  D. Rolison,et al.  Electroless Deposition of Nanoscale MnO2 on Ultraporous Carbon Nanoarchitectures: Correlation of Evolving Pore-Solid Structure and Electrochemical Performance , 2008 .

[58]  M. Es‐Souni,et al.  Synthesis of palladium nanowire arrays with controlled diameter and length , 2008 .

[59]  Ran Liu,et al.  MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. , 2008, Journal of the American Chemical Society.

[60]  Nathan S Lewis,et al.  Photovoltaic measurements in single-nanowire silicon solar cells. , 2008, Nano letters.

[61]  Jing Liang,et al.  Template-Directed Materials for Rechargeable Lithium-Ion Batteries† , 2008 .

[62]  E. Wang,et al.  Gold/platinum hybrid nanoparticles supported on multiwalled carbon nanotube/silica coaxial nanocables: Preparation and application as electrocatalysts for oxygen reduction , 2008 .

[63]  A. C. Dillon,et al.  Metal oxide nano-particles for improved electrochromic and lithium-ion battery technologies , 2008 .

[64]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[65]  N. Ming,et al.  Shape‐Selective Synthesis of Gold Nanoparticles with Controlled Sizes, Shapes, and Plasmon Resonances , 2007 .

[66]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[67]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[68]  A. Reddy,et al.  Pt/SWNT-Pt/C Nanocomposite Electrocatalysts for Proton-Exchange Membrane Fuel Cells , 2007 .

[69]  Bruno Scrosati,et al.  Nanostructured Sn–C Composite as an Advanced Anode Material in High‐Performance Lithium‐Ion Batteries , 2007 .

[70]  In-Sung Hwang,et al.  Highly conductive coaxial SnO(2)-In(2)O(3) heterostructured nanowires for Li ion battery electrodes. , 2007, Nano letters.

[71]  L. Kavan,et al.  Enhancement of Electrochemical Activity of LiFePO4 (olivine) by amphiphilic Ru-bipyridine complex anchored to a Carbon nanotube , 2007 .

[72]  P. Ajayan,et al.  Flexible energy storage devices based on nanocomposite paper , 2007, Proceedings of the National Academy of Sciences.

[73]  I. Kiricsi,et al.  Controlling the pore diameter distribution of multi-wall carbon nanotube buckypapers , 2007 .

[74]  Andreas Greiner,et al.  Electrospinning: a fascinating method for the preparation of ultrathin fibers. , 2007, Angewandte Chemie.

[75]  Glenn G. Amatucci,et al.  Structure and Electrochemistry of Copper Fluoride Nanocomposites Utilizing Mixed Conducting Matrices , 2007 .

[76]  P. Ajayan,et al.  Template assembly of tube-in-tube carbon nanotubes grown using Cu as catalyst , 2007 .

[77]  Bruno Scrosati,et al.  High‐Rate, Long‐Life Ni–Sn Nanostructured Electrodes for Lithium‐Ion Batteries , 2007 .

[78]  A. Reddy,et al.  Nanocrystalline Metal Oxides Dispersed Multiwalled Carbon Nanotubes as Supercapacitor Electrodes , 2007 .

[79]  I. Yamashita,et al.  Synthesis of CoPt and FePt3 Nanowires Using the Central Channel of Tobacco Mosaic Virus as a Biotemplate , 2007 .

[80]  E. Wang,et al.  A novel hybrid nanostructure based on SiO2@carbon nanotube coaxial nanocable , 2007 .

[81]  Lan-sun Zheng,et al.  Syntheses of rare-earth metal oxide nanotubes by the sol-gel method assisted with porous anodic aluminum oxide templates , 2007 .

[82]  Jeffrey W Long,et al.  Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. , 2007, Nano letters.

[83]  C. Grimes,et al.  Cation Effect on the Electrochemical Formation of Very High Aspect Ratio TiO2 Nanotube Arrays in Formamide−Water Mixtures , 2007 .

[84]  Vincenzo Balzani,et al.  Die Zukunft der Energieversorgung – Herausforderungen und Chancen , 2007 .

[85]  N. Padture,et al.  Template-Directed, Near-Ambient Synthesis of Au–TiO2–Au Heterojunction Nanowires Mediated by Self-Assembled Monolayers (SAMs) , 2007 .

[86]  Vincenzo Balzani,et al.  The future of energy supply: Challenges and opportunities. , 2007, Angewandte Chemie.

[87]  P. Ajayan,et al.  Multisegmented one-dimensional hybrid structures of carbon nanotubes and metal nanowires , 2006 .

[88]  K. Hata,et al.  Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes , 2006, Nature materials.

[89]  T. Fisher,et al.  Lithography-free in situ Pd contacts to templated single-walled carbon nanotubes. , 2006, Nano letters.

[90]  Daoben Zhu,et al.  Direct route to high-density and uniform assembly of Au nanoparticles on carbon nanotubes , 2006 .

[91]  Surjya K. Pal,et al.  Direct growth of aligned carbon nanotubes on bulk metals , 2006, Nature nanotechnology.

[92]  Menachem Nathan,et al.  Progress in three-dimensional (3D) Li-ion microbatteries , 2006 .

[93]  David Wexler,et al.  Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. , 2006, Angewandte Chemie.

[94]  Hui Xia,et al.  Li diffusion in LiCoO2 thin films prepared by pulsed laser deposition , 2006 .

[95]  S. Kelley,et al.  Optoelectrical characteristics of individual zinc oxide nanorods grown by DNA directed assembly on vertically aligned carbon nanotube tips , 2006 .

[96]  Kornelius Nielsch,et al.  Fast fabrication of long-range ordered porous alumina membranes by hard anodization , 2006, Nature materials.

[97]  T. Fisher,et al.  Vertical single- and double-walled carbon nanotubes grown from modified porous anodic alumina templates , 2006 .

[98]  X. Li,et al.  Water‐Assisted Growth of Aligned Carbon Nanotube–ZnO Heterojunction Arrays , 2006 .

[99]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[100]  M. Shaijumon,et al.  Platinum/multiwalled carbon nanotubes-platinum/carbon composites as electrocatalysts for oxygen reduction reaction in proton exchange membrane fuel cell , 2006 .

[101]  Jing Zhu,et al.  Arrays of one-dimensional metal/silicon and metal/carbon nanotube heterojunctions , 2006 .

[102]  S. Kelley,et al.  DNA-directed synthesis of zinc oxide nanowires on carbon nanotube tips , 2006, Nanotechnology.

[103]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[104]  Y. Chiang,et al.  Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes , 2006, Science.

[105]  Chad A Mirkin,et al.  Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. , 2006, Angewandte Chemie.

[106]  Pierre-Louis Taberna,et al.  Modification of Al Current Collector/Active Material Interface for Power Improvement of Electrochemical Capacitor Electrodes , 2006 .

[107]  S. Liao,et al.  High performance PtRuIr catalysts supported on carbon nanotubes for the anodic oxidation of methanol. , 2006, Journal of the American Chemical Society.

[108]  R. Holze,et al.  Surface modifications of electrode materials for lithium ion batteries , 2006 .

[109]  Daoben Zhu,et al.  Carbon Nanotubes Coated with Alumina as Gate Dielectrics of Field‐Effect Transistors , 2006 .

[110]  G. Xue,et al.  Synthesis and characterization of carbon nanotube/polypyrrole core–shell nanocomposites via in situ inverse microemulsion , 2005 .

[111]  Mao-Sung Wu,et al.  Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries. , 2005, The journal of physical chemistry. B.

[112]  Christopher P. Rhodes,et al.  Direct Electrodeposition of Nanoscale Solid Polymer Electrolytes via Electropolymerization of Sulfonated Phenols , 2005 .

[113]  M. Nathan,et al.  Three-dimensional thin-film Li-ion microbatteries for autonomous MEMS , 2005, Journal of Microelectromechanical Systems.

[114]  N. Padture,et al.  Engineered metal-oxide-metal heterojunction nanowires , 2005 .

[115]  Charles M. Lieber,et al.  Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. , 2005, Nano letters.

[116]  Kornelius Nielsch,et al.  A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes. , 2005, Angewandte Chemie.

[117]  J. Duh,et al.  Improving the electrochemical performance of LiCoO2 cathode by nanocrystalline ZnO coating , 2005 .

[118]  Bruno Scrosati,et al.  A High-Rate, Nanocomposite LiFePO4 ∕ Carbon Cathode , 2005 .

[119]  Andrew S. Tanenbaum,et al.  RFID Guardian: A Battery-Powered Mobile Device for RFID Privacy Management , 2005, ACISP.

[120]  Phaedon Avouris,et al.  The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. , 2005, Nano letters.

[121]  T. Uchida,et al.  Carbon nanotube core–polymer shell nanofibers , 2005 .

[122]  H. Gómez,et al.  Crystallographically-oriented single-crystalline copper nanowire arrays electrochemically grown into nanoporous anodic alumina templates , 2005 .

[123]  G. S. Wu,et al.  Controlled synthesis of ZnO nanowires or nanotubes via sol-gel template process , 2005 .

[124]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[125]  M. J. Rost,et al.  Pushing the limits of SPM , 2005 .

[126]  Li Wang,et al.  One-step synthesis of silver nanoparticles, nanorods, and nanowires on the surface of DNA network. , 2005, The journal of physical chemistry. B.

[127]  W. Pamler,et al.  Carbon nanotubes for microelectronics? , 2005, Small.

[128]  J. Ding,et al.  Growth of single-crystalline Ni and Co nanowires via electrochemical deposition and their magnetic properties. , 2005, The journal of physical chemistry. B.

[129]  Sundara Ramaprabhu,et al.  Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material , 2005 .

[130]  T. Mallouk,et al.  Nanowire p–n Heterojunction Diodes Made by Templated Assembly of Multilayer Carbon‐Nanotube/Polymer/Semiconductor‐Particle Shells around Metal Nanowires , 2005 .

[131]  Jiahai Wang,et al.  Template-synthesized protein nanotubes. , 2005, Nano letters.

[132]  Wai Kin Chim,et al.  Shape and Size Control of Regularly Arrayed Nanodots Fabricated Using Ultrathin Alumina Masks , 2005 .

[133]  Li Wan,et al.  Template Synthesis of Sc@C82(I) Nanowires and Nanotubes at Room Temperature , 2005 .

[134]  Stanislaus S. Wong,et al.  Covalent Surface Chemistry of Single‐Walled Carbon Nanotubes , 2005 .

[135]  Jeffrey W. Long,et al.  Charge insertion into hybrid nanoarchitectures: mesoporous manganese oxide coated with ultrathin poly(phenylene oxide) , 2004 .

[136]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[137]  Itamar Willner,et al.  Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[138]  Bruce Dunn,et al.  Three-dimensional battery architectures. , 2004, Chemical reviews.

[139]  Christopher P. Rhodes,et al.  Nanoscale Polymer Electrolytes: Ultrathin Electrodeposited Poly(Phenylene Oxide) with Solid-State Ionic Conductivity , 2004 .

[140]  Younan Xia,et al.  Electrospinning of Nanofibers: Reinventing the Wheel? , 2004 .

[141]  Kun-Hong Lee,et al.  Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes , 2004 .

[142]  Junichi Kawamura,et al.  Thin-film lithium-ion battery with amorphous solid electrolyte fabricated by pulsed laser deposition , 2004 .

[143]  Jaeyoung Lee,et al.  Electrodeposition of Cu2O nanowires using nanoporous alumina template , 2004 .

[144]  Y. Bando,et al.  SiC–SiO2–C Coaxial Nanocables and Chains of Carbon Nanotube–SiC Heterojunctions , 2004 .

[145]  Hongzheng Chen,et al.  Carbon Nanotube/CdS Core–Shell Nanowires Prepared by a Simple Room‐Temperature Chemical Reduction Method , 2004 .

[146]  T. Kijima,et al.  Noble-metal nanotubes (Pt, Pd, Ag) from lyotropic mixed-surfactant liquid-crystal templates. , 2004, Angewandte Chemie.

[147]  G. Shen,et al.  Microwave-assisted synthesis of metal sulfides in ethylene glycol , 2003 .

[148]  Jeffrey W. Long,et al.  Ultrathin, protective coatings of poly(o-phenylenediamine) as electrochemical proton gates: Making mesoporous MnO2 nanoarchitectures stable in acid electrolytes , 2003 .

[149]  Yu‐Guo Guo,et al.  Gold/Titania Core/Sheath Nanowires Prepared by Layer-by-Layer Assembly , 2003 .

[150]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[151]  P. Ajayan,et al.  Hydrophobic Anchoring of Monolayer-Protected Gold Nanoclusters to Carbon Nanotubes , 2003 .

[152]  Kiyoshi Kanamura,et al.  Preparation of Li4Ti5O12 and LiCoO2 thin film electrodes from precursors obtained by sol–gel method , 2002 .

[153]  Y. Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[154]  F. Béguin,et al.  Electrochemical storage of energy in carbon nanotubes and nanostructured carbons , 2002 .

[155]  Seong Chu Lim,et al.  High-Capacitance Supercapacitor Using a Nanocomposite Electrode of Single-Walled Carbon Nanotube and Polypyrrole , 2002 .

[156]  J. Tarascon,et al.  Metal oxides as negative electrode materials in Li-ion cells , 2002 .

[157]  Dongsheng Xu,et al.  ELECTROCHEMICALLY INDUCED SOL-GEL PREPARATION OF SINGLE-CRYSTALLINE TIO2NANOWIRES , 2002 .

[158]  K. G. Ong,et al.  Highly Ordered Nanoporous Alumina Films: Effect of Pore Size and Uniformity on Sensing Performance , 2002 .

[159]  M. Terrones,et al.  Nanotube composites: novel SiO2 coated carbon nanotubes. , 2002, Chemical communications.

[160]  P. Yang,et al.  Single Nanowire Lasers , 2001 .

[161]  G. Yin,et al.  Sol–Gel Template Synthesis of an Array of Single Crystal CdS Nanowires on a Porous Alumina Template , 2001 .

[162]  G. Meng,et al.  Synthesis of Ordered Single Crystal Silicon Nanowire Arrays , 2001 .

[163]  Bruno Scrosati,et al.  Nanomaterial-based Li-ion battery electrodes , 2001 .

[164]  M. Terrones,et al.  SiOx-coating of carbon nanotubes at room temperature , 2001 .

[165]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[166]  Andreas Greiner,et al.  Nanostructured Fibers via Electrospinning , 2001 .

[167]  J. Bates Thin-Film Lithium and Lithium-Ion Batteries , 2000 .

[168]  A. Burke Ultracapacitors: why, how, and where is the technology , 2000 .

[169]  K. Méténier,et al.  Supercapacitor electrodes from multiwalled carbon nanotubes , 2000 .

[170]  S. Mann,et al.  The Chemistry of Form. , 2000, Angewandte Chemie.

[171]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[172]  Charles R. Martin,et al.  Rate Capabilities of Nanostructured LiMn2 O 4 Electrodes in Aqueous Electrolyte , 2000 .

[173]  N. Dudney,et al.  “Lithium‐Free” Thin‐Film Battery with In Situ Plated Li Anode , 2000 .

[174]  Iijima,et al.  Heterostructures of single-walled carbon nanotubes and carbide nanorods , 1999, Science.

[175]  J. Bates,et al.  Lithium silicon tin oxynitride (LiySiTON): high-performance anode in thin-film lithium-ion batteries for microelectronics , 1999 .

[176]  C. R. Martin,et al.  Sol-gel-based template synthesis and Li-insertion rate performance of nanostructured vanadium pentoxide , 1999 .

[177]  Jiangtao Hu,et al.  Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires , 1999, Nature.

[178]  B. Scrosati,et al.  A High‐Rate, High‐Capacity, Nanostructured Tin Oxide Electrode , 1999 .

[179]  Hideki Masuda,et al.  Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution , 1998 .

[180]  Jackie Y. Ying,et al.  Bismuth quantum-wire arrays fabricated by a vacuum melting and pressure injection process , 1998 .

[181]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[182]  C. R. Martin,et al.  Carbon nanotubule membranes for electrochemical energy storage and production , 1998, Nature.

[183]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[184]  T. Brousse,et al.  Thin‐Film Crystalline SnO2‐Lithium Electrodes , 1998 .

[185]  Malcolm K. Hughes,et al.  Global-scale temperature patterns and climate forcing over the past six centuries , 1998, Nature.

[186]  Charles R. Martin,et al.  Sol−Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures , 1997 .

[187]  I. Uchida,et al.  Electrochemical characterization of thin-film LiCoO2 electrodes in propylene carbonate solutions , 1997 .

[188]  C. R. Martin,et al.  Template Synthesis of Polypyrrole‐Coated Spinel LiMn2 O 4 Nanotubules and Their Properties as Cathode Active Materials for Lithium Batteries , 1997 .

[189]  R. Hoch,et al.  High power electrochemical capacitors based on carbon nanotube electrodes , 1997 .

[190]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[191]  P. Birke,et al.  Materials for lithium thin-film batteries for application in silicon technology , 1996 .

[192]  Stephen Mann,et al.  Synthesis of inorganic materials with complex form , 1996, Nature.

[193]  Information Security and Privacy , 1996, Lecture Notes in Computer Science.

[194]  G. Ozin,et al.  Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons , 1995, Nature.

[195]  S. Mann,et al.  Fabrication of hollow porous shells of calcium carbonate from self-organizing media , 1995, Nature.

[196]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.