RNA Secondary Structure Prediction

In this unit, protocols are provided for predicting RNA secondary structure with the user‐friendly RNAstructure desktop computer program and the RNAstructure Web server. The minimum free energy structure and a set of suboptimal structures with similar free energies are predicted. Prediction of high‐affinity oligonucleotide binding sites to a structured RNA target is also presented. © 2016 by John Wiley & Sons, Inc.

[1]  D. Mathews,et al.  ProbKnot: fast prediction of RNA secondary structure including pseudoknots. , 2010, RNA.

[2]  D. Mathews,et al.  Improved RNA secondary structure prediction by maximizing expected pair accuracy. , 2009, RNA.

[3]  D. Mathews,et al.  Accurate SHAPE-directed RNA structure determination , 2009, Proceedings of the National Academy of Sciences.

[4]  David H. Mathews,et al.  Efficient siRNA selection using hybridization thermodynamics , 2007, Nucleic acids research.

[5]  D. Turner,et al.  A set of nearest neighbor parameters for predicting the enthalpy change of RNA secondary structure formation , 2006, Nucleic acids research.

[6]  H. Soifer,et al.  siRNA target site secondary structure predictions using local stable substructures , 2005, Nucleic acids research.

[7]  Sean R Eddy,et al.  How do RNA folding algorithms work? , 2004, Nature Biotechnology.

[8]  D. Mathews Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. , 2004, RNA.

[9]  D. Turner,et al.  Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Niles A. Pierce,et al.  A partition function algorithm for nucleic acid secondary structure including pseudoknots , 2003, J. Comput. Chem..

[11]  E. Southern,et al.  Messenger RNA expression profiling of genes involved in epidermal growth factor receptor signalling in human cancer cells treated with scanning array-designed antisense oligonucleotides. , 2003, Biochemical pharmacology.

[12]  A D Tsodikov,et al.  Thermodynamic criteria for high hit rate antisense oligonucleotide design. , 2003, Nucleic acids research.

[13]  Georg Sczakiel,et al.  The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. , 2003, Nucleic acids research.

[14]  Ivo L. Hofacker,et al.  Vienna RNA secondary structure server , 2003, Nucleic Acids Res..

[15]  E. Southern,et al.  The Efficacy of Small Interfering RNAs Targeted to the Type 1 Insulin-like Growth Factor Receptor (IGF1R) Is Influenced by Secondary Structure in the IGF1R Transcript* , 2003, The Journal of Biological Chemistry.

[16]  D. Engelke,et al.  Probing RNA Structure with Chemical Reagents and Enzymes , 2000, Current protocols in nucleic acid chemistry.

[17]  A D Baxevanis,et al.  Predictive methods using DNA sequences. , 2001, Methods of biochemical analysis.

[18]  Christian N. S. Pedersen,et al.  Pseudoknots in RNA secondary structures , 2000, RECOMB '00.

[19]  D. Turner,et al.  Predicting oligonucleotide affinity to nucleic acid targets. , 1999, RNA.

[20]  J. Sabina,et al.  Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. , 1999, Journal of molecular biology.

[21]  Christian N. S. Pedersen,et al.  Internal loops in RNA secondary structure prediction , 1999, RECOMB.

[22]  E Rivas,et al.  A dynamic programming algorithm for RNA structure prediction including pseudoknots. , 1998, Journal of molecular biology.

[23]  Michael Zuker,et al.  Algorithms and Thermodynamics for RNA Secondary Structure Prediction: A Practical Guide , 1999 .

[24]  D. Turner,et al.  Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. , 1998, Biochemistry.

[25]  M. Zuker,et al.  Using reliability information to annotate RNA secondary structures. , 1998, RNA.

[26]  James W. Brown The ribonuclease P database , 1998, Nucleic Acids Res..

[27]  E Westhof,et al.  Isoalloxazine derivatives promote photocleavage of natural RNAs at G.U base pairs embedded within helices. , 1997, Nucleic acids research.

[28]  P. Burgstaller,et al.  Flavin-Dependent Photocleavage of RNA at G·U Base Pairs , 1997 .

[29]  D. Turner,et al.  Secondary structure model of the RNA recognized by the reverse transcriptase from the R2 retrotransposable element. , 1997, RNA.

[30]  D. Bartel,et al.  Phylogenetic analysis of tmRNA secondary structure. , 1996, RNA.

[31]  C. Steegborn,et al.  Compilation of tRNA sequences and sequences of tRNA genes. , 1996, Nucleic acids research.

[32]  M. Zuker,et al.  "Well-determined" regions in RNA secondary structure prediction: analysis of small subunit ribosomal RNA. , 1995, Nucleic acids research.

[33]  A. E. Walter,et al.  Coaxial stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA folding. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[34]  R. Gutell,et al.  A comparative database of group I intron structures. , 1994, Nucleic acids research.

[35]  R. Gutell,et al.  Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994. , 1993, Nucleic acids research.

[36]  Mathias Sprinzl,et al.  Compilation of tRNA sequences and sequences of tRNA genes , 1993, Nucleic Acids Res..

[37]  M. Zuker On finding all suboptimal foldings of an RNA molecule. , 1989, Science.

[38]  G. Knapp Enzymatic approaches to probing of RNA secondary and tertiary structure. , 1989, Methods in enzymology.

[39]  J. Ebel,et al.  Probing the structure of RNAs in solution. , 1987, Nucleic acids research.