Laser-Texturing of Stainless Steel as a Corrosion Mitigation Strategy for High-Temperature Molten Salts Applications Under Dynamic Conditions

[1]  O. Bondarchuk,et al.  Laser-induced carbonization of stainless steel as a corrosion mitigation strategy for high-temperature molten salts applications , 2022, Journal of Energy Storage.

[2]  R. Pitchumani,et al.  Novel textured surfaces for superior corrosion mitigation in molten carbonate salts for concentrating solar power , 2022, Renewable and Sustainable Energy Reviews.

[3]  Ze Sun,et al.  Acceleration of Thermal Decomposition of Molten Nitrates by Cr in Steel and Promotion of This Effect by Halogens , 2022, AIChE Journal.

[4]  E. Fuentealba,et al.  Evaluation of flow accelerated corrosion and mechanical performance of martensitic steel T91 for a ternary mixture of molten salts for CSP plants , 2022, Solar Energy Materials and Solar Cells.

[5]  O. Bondarchuk,et al.  Effect of dynamic conditions on high-temperature corrosion of ternary carbonate salt for thermal energy storage applications , 2022, Solar Energy Materials and Solar Cells.

[6]  Yuting Wu,et al.  Comparative review of different influence factors on molten salt corrosion characteristics for thermal energy storage , 2022, Solar Energy Materials and Solar Cells.

[7]  Huayi Yin,et al.  Corrosion Behaviors of SS310 and IN718 Alloys in Molten Carbonate , 2021, Journal of The Electrochemical Society.

[8]  F. D. Luca,et al.  Concentrated Solar Power (CSP) for Sustainable Architecture to Supply Domestic Hot Water and Heating Loads of Buildings , 2021, Journal of Physics: Conference Series.

[9]  R. Pitchumani,et al.  Fractal textured surfaces for high temperature corrosion mitigation in molten salts , 2021 .

[10]  Chong-fang Ma,et al.  Dynamic corrosion behavior of 316L stainless steel in quaternary nitrate-nitrite salts under different flow rates , 2020 .

[11]  Jing Luo,et al.  Corrosion behavior of SS316L in ternary Li2CO3–Na2CO3–K2CO3 eutectic mixture salt for concentrated solar power plants , 2020 .

[12]  Xiaoming Zhang,et al.  Experimental research of high temperature dynamic corrosion characteristic of stainless steels in nitrate eutectic molten salt , 2020 .

[13]  M. E. Navarro,et al.  Inhibiting hot corrosion of molten Li2CO3-Na2CO3-K2CO3 salt through graphitization of construction materials for concentrated solar power , 2020 .

[14]  Yulong Ding,et al.  Effect of SiO2 nanoparticle addition on the wetting and rheological properties of solar salt , 2020 .

[15]  S. Sah Corrosion of 304 stainless steel in carbonates melt– a state of enhanced dissolution of corrosion products , 2020, Corrosion Science.

[16]  F. Pérez,et al.  High temperature corrosion beneath carbonate melts of aluminide coatings for CSP application , 2020, Solar Energy Materials and Solar Cells.

[17]  O. Bondarchuk,et al.  Graphitization as efficient inhibitor of the carbon steel corrosion by molten binary nitrate salt for thermal energy storage at concentrated solar power , 2019 .

[18]  G. Will,et al.  Corrosion mechanisms in molten salt thermal energy storage for concentrating solar power , 2019, Renewable and Sustainable Energy Reviews.

[19]  T. Bauer,et al.  Molten chloride salts for next generation CSP plants: Electrolytical salt purification for reducing corrosive impurity level , 2019, Solar Energy Materials and Solar Cells.

[20]  Y. Grosu,et al.  Development of molten nitrate salt based nanofluids for thermal energy storage application: High thermal performance and long storage components life-time , 2019, SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems.

[21]  Jing Ding,et al.  Corrosion behavior and mechanism of austenitic stainless steels in a new quaternary molten salt for concentrating solar power , 2019, Solar Energy Materials and Solar Cells.

[22]  L. Cabeza,et al.  Corrosion monitoring and mitigation techniques on advanced thermal energy storage materials for CSP plants , 2019, Solar Energy Materials and Solar Cells.

[23]  S. Dimov,et al.  Wettability modification of laser-fabricated hierarchical surface structures in Ti-6Al-4V titanium alloy , 2019, Applied Surface Science.

[24]  Yaroslav Grosu,et al.  A simple method for the inhibition of the corrosion of carbon steel by molten nitrate salt for thermal storage in concentrating solar power applications , 2018, npj Materials Degradation.

[25]  F. Pérez,et al.  High temperature molten salt corrosion behavior of aluminide and nickel-aluminide coatings for heat storage in concentrated solar power plants , 2018, Surface and Coatings Technology.

[26]  G. S. Miguel,et al.  Economic viability of concentrated solar power under different regulatory frameworks in Spain , 2018, Renewable and Sustainable Energy Reviews.

[27]  O. Bondarchuk,et al.  Unexpected effect of nanoparticles doping on the corrosivity of molten nitrate salt for thermal energy storage , 2018 .

[28]  S. Sah,et al.  Corrosion behaviour of austenitic stainless steels in carbonate melt at 923 K under controlled CO2-O2 environment , 2018 .

[29]  G. Will,et al.  Corrosion of Inconel 601 in molten salts for thermal energy storage , 2017 .

[30]  G. Will,et al.  Corrosion of steel alloys in eutectic NaCl+Na2CO3 at 700 °C and Li2CO3 + K2CO3 + Na2CO3 at 450 °C for thermal energy storage , 2017 .

[31]  S. Dimov,et al.  Influence of ambient conditions on the evolution of wettability properties of an IR-, ns-laser textured aluminium alloy , 2017 .

[32]  M. I. Lasanta,et al.  Evaluation of corrosion resistance of A516 Steel in a molten nitrate salt mixture using a pilot plant facility for application in CSP plants , 2017 .

[33]  M. Boča,et al.  High-Temperature Corrosion Behavior of Superalloys in Molten Salts – A Review , 2017 .

[34]  M. I. Lasanta,et al.  Corrosion resistance of HR3C to a carbonate molten salt for energy storage applications in CSP plants , 2016 .

[35]  Edward Fuentealba,et al.  Corrosion of stainless steels and low-Cr steel in molten Ca(NO3)2–NaNO3–KNO3 eutectic salt for direct energy storage in CSP plants , 2015 .

[36]  F. Pérez,et al.  Thermal influence in corrosion properties of Chilean solar nitrates , 2014 .

[37]  J. Porcayo-Calderón,et al.  Corrosion Behavior of Pure Cr, Ni, and Fe Exposed to Molten Salts at High Temperature , 2014 .

[38]  Y. Niu,et al.  Electrochemical impedance studies of the initial-stage corrosion of 310S stainless steel beneath thin film of molten (0.62Li, 0.38K)2CO3 at 650 °C , 2011 .

[39]  M. Bocquet,et al.  Graphene on metal surfaces , 2009 .

[40]  Shakeel Ahmed,et al.  Decomposition of hydrocarbons to hydrogen and carbon , 2009 .

[41]  S. Loreti,et al.  The role of alkaline-earth additives on the molten carbonate corrosion of 316L stainless steel , 2007 .

[42]  S. Loreti,et al.  The role of temperature on the corrosion and passivation of type 310S stainless steel in eutectic (Li + K) carbonate melt , 2006 .

[43]  K. Ui,et al.  Corrosion Behavior of Fe-Cr Alloys in Li2CO3-K2CO3 Molten Carbonate , 2005 .

[44]  R. Bradshaw,et al.  Corrosion of stainless steels and carbon steel by molten mixtures of commercial nitrate salts , 2004 .

[45]  T. Ishitsuka,et al.  Stability of protective oxide films in waste incineration environment—solubility measurement of oxides in molten chlorides , 2002 .

[46]  G. Lindbergh,et al.  Corrosion behaviour of high-chromium ferritic steels in molten carbonate in cathode environment , 2001 .

[47]  S. Nam,et al.  Effects of temperature and partial pressure of CO2/O2 on corrosion behaviour of stainless-steel in molten Li/Na carbonate salt , 2000 .

[48]  G. Lindbergh,et al.  Corrosion of 304 Stainless Steel in Molten‐Carbonate Fuel Cells , 1999 .

[49]  J. Vossen,et al.  Corrosion Behavior of Stainless Steel and Nickel‐Base Alloys in Molten Carbonate , 1995 .

[50]  Yunchang Zhang,et al.  Preparation and Characterization of Iron Manganese Carbide by Reaction of the Oxides and Carbon in Nitrogen , 1994 .

[51]  S. J. Rothman,et al.  Self-diffusion in austenitic Fe-Cr-Ni alloys , 1980 .

[52]  Huitian Peng,et al.  Molten salts in the light of corrosion mitigation strategies and embedded with nanoparticles to enhance the thermophysical properties for CSP plants , 2021 .

[53]  K. V. Sharma,et al.  Thermal Spray Coatings for Hot Corrosion Resistance , 2017 .