Finite Element Formulation for Ferroelectric Hysteresis of Piezoelectric Materials
暂无分享,去创建一个
Barbara Kaltenbacher | Manfred Kaltenbacher | Reinhard Lerch | B. Kaltenbacher | R. Lerch | T. Hegewald | M. Kaltenbacher | T. Hegewald | R. Lerch
[1] M. Kamlah,et al. Ferroelectric and ferroelastic piezoceramics – modeling of electromechanical hysteresis phenomena , 2001 .
[2] Klaus Kuhnen,et al. Inverse Steuerung piezoelektrischer Aktoren mit Hysterese-, Kriech- und Superpositionsoperatoren , 2001 .
[3] Sven Klinkel,et al. A constitutive model for magnetostrictive and piezoelectric materials , 2009 .
[4] Gérard A. Maugin,et al. Thermodynamical formulation for coupled electromechanical hysteresis effects—I. Basic equations , 1988 .
[5] R. McMeeking,et al. A principle of virtual work for combined electrostatic and mechanical loading of materials , 2007 .
[6] Marc Kamlah,et al. Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior , 2001 .
[7] Stefan Seelecke,et al. A Stress-dependent Hysteresis Model for Ferroelectric Materials , 2007 .
[8] Victor Giurgiutiu. Active materials and smart structures , 2011 .
[9] Norman A. Fleck,et al. Multi-axial electrical switching of a ferroelectric: theory versus experiment , 2001 .
[10] W. Kreher,et al. Simulation of microstructure evolution in polycrystalline ferroelectrics–ferroelastics , 2006 .
[11] Barbara Kaltenbacher,et al. PDE based determination of piezoelectric material tensors , 2006, European Journal of Applied Mathematics.
[12] W. Seemann,et al. A nonlinear model of piezoelectric polycrystalline ceramics under quasi-static electromechanical loading , 2005 .
[13] B. Kaltenbacher,et al. FEM-Based determination of real and complex elastic, dielectric, and piezoelectric moduli in piezoceramic materials , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[14] J. Z. Zhu,et al. The finite element method , 1977 .
[15] Manfred Kaltenbacher,et al. Numerical Simulation of Mechatronic Sensors and Actuators , 2004 .
[16] Gérard A. Maugin,et al. Thermodynamical formulation for coupled electromechanical hysteresis effects—IV. Combined electromechanical loading , 1989 .
[17] Yann Pasco,et al. A Hybrid Analytical/Numerical Model of Piezoelectric Stack Actuators Using a Macroscopic Nonlinear Theory of Ferroelectricity and a Preisach Model of Hysteresis , 2004 .
[18] Joshua R. Smith,et al. A Free Energy Model for Hysteresis in Ferroelectric Materials , 2003, Journal of Intelligent Material Systems and Structures.
[19] A. Froehlich. Mikromechanisches Modell zur Ermittlung effektiver Materialeigenschaften von piezoelektrischen Polykristallen , 2001 .
[20] Barbara Kaltenbacher,et al. Efficient Modeling of Ferroelectric Behavior for the Analysis of Piezoceramic Actuators , 2008 .
[21] J. Huber. Micromechanical modelling of ferroelectrics , 2005 .
[22] Chad M. Landis,et al. Non-linear constitutive modeling of ferroelectrics , 2004 .
[23] Chad M. Landis,et al. Continuum thermodynamics of ferroelectric domain evolution: Theory, finite element implementation, and application to domain wall pinning , 2007 .
[24] I. Mayergoyz. Mathematical models of hysteresis and their applications , 2003 .
[25] Eric Laboure,et al. Characterization and model of ferroelectrics based on experimental Preisach density , 2002 .
[26] Jörg Schröder,et al. A thermodynamically consistent mesoscopic model for transversely isotropic ferroelectric ceramics in a coordinate-invariant setting , 2005 .