Finite Element Formulation for Ferroelectric Hysteresis of Piezoelectric Materials

For the numerical simulation of non-linear piezoelectric material behavior, we use a constitutive relation that is based on a decomposition of the physical quantities dielectric displacement and mechanical strain into a reversible and an irreversible part. Therein, we set the irreversible part of the dielectric displacement equal to the irreversible electric polarization and express the irreversible mechanical strain by a polynomial ansatz of the irreversible electric polarization. The reversible parts of mechanical strain and dielectric displacement are further described by the linear piezoelectric constitutive law. We apply a Preisach hysteresis operator to compute the irreversible polarization from the history of the driving electric field. Furthermore, the entries of the piezoelectric modulus tensor are assumed to be functions of the electric polarization. To efficiently solve the non-linear system of partial differential equations, we have developed a quasi-Newton scheme and use the finite element (FE) method for the numerical solution. This FE scheme has been applied to numerically calculate the dynamic behavior of a piezoelectric disc and a stack actuator. The obtained results compare well to measured data.

[1]  M. Kamlah,et al.  Ferroelectric and ferroelastic piezoceramics – modeling of electromechanical hysteresis phenomena , 2001 .

[2]  Klaus Kuhnen,et al.  Inverse Steuerung piezoelektrischer Aktoren mit Hysterese-, Kriech- und Superpositionsoperatoren , 2001 .

[3]  Sven Klinkel,et al.  A constitutive model for magnetostrictive and piezoelectric materials , 2009 .

[4]  Gérard A. Maugin,et al.  Thermodynamical formulation for coupled electromechanical hysteresis effects—I. Basic equations , 1988 .

[5]  R. McMeeking,et al.  A principle of virtual work for combined electrostatic and mechanical loading of materials , 2007 .

[6]  Marc Kamlah,et al.  Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior , 2001 .

[7]  Stefan Seelecke,et al.  A Stress-dependent Hysteresis Model for Ferroelectric Materials , 2007 .

[8]  Victor Giurgiutiu Active materials and smart structures , 2011 .

[9]  Norman A. Fleck,et al.  Multi-axial electrical switching of a ferroelectric: theory versus experiment , 2001 .

[10]  W. Kreher,et al.  Simulation of microstructure evolution in polycrystalline ferroelectrics–ferroelastics , 2006 .

[11]  Barbara Kaltenbacher,et al.  PDE based determination of piezoelectric material tensors , 2006, European Journal of Applied Mathematics.

[12]  W. Seemann,et al.  A nonlinear model of piezoelectric polycrystalline ceramics under quasi-static electromechanical loading , 2005 .

[13]  B. Kaltenbacher,et al.  FEM-Based determination of real and complex elastic, dielectric, and piezoelectric moduli in piezoceramic materials , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[14]  J. Z. Zhu,et al.  The finite element method , 1977 .

[15]  Manfred Kaltenbacher,et al.  Numerical Simulation of Mechatronic Sensors and Actuators , 2004 .

[16]  Gérard A. Maugin,et al.  Thermodynamical formulation for coupled electromechanical hysteresis effects—IV. Combined electromechanical loading , 1989 .

[17]  Yann Pasco,et al.  A Hybrid Analytical/Numerical Model of Piezoelectric Stack Actuators Using a Macroscopic Nonlinear Theory of Ferroelectricity and a Preisach Model of Hysteresis , 2004 .

[18]  Joshua R. Smith,et al.  A Free Energy Model for Hysteresis in Ferroelectric Materials , 2003, Journal of Intelligent Material Systems and Structures.

[19]  A. Froehlich Mikromechanisches Modell zur Ermittlung effektiver Materialeigenschaften von piezoelektrischen Polykristallen , 2001 .

[20]  Barbara Kaltenbacher,et al.  Efficient Modeling of Ferroelectric Behavior for the Analysis of Piezoceramic Actuators , 2008 .

[21]  J. Huber Micromechanical modelling of ferroelectrics , 2005 .

[22]  Chad M. Landis,et al.  Non-linear constitutive modeling of ferroelectrics , 2004 .

[23]  Chad M. Landis,et al.  Continuum thermodynamics of ferroelectric domain evolution: Theory, finite element implementation, and application to domain wall pinning , 2007 .

[24]  I. Mayergoyz Mathematical models of hysteresis and their applications , 2003 .

[25]  Eric Laboure,et al.  Characterization and model of ferroelectrics based on experimental Preisach density , 2002 .

[26]  Jörg Schröder,et al.  A thermodynamically consistent mesoscopic model for transversely isotropic ferroelectric ceramics in a coordinate-invariant setting , 2005 .