65 years of ZnO research – old and very recent results

The research on ZnO has a long history but experiences an extremely vivid revival during the last 10 years. We critically discuss in this didactical review old and new results concentrating on optical properties but presenting shortly also a few aspects of other fields like transport or magnetic properties. We start generally with the properties of bulk samples, proceed then to epitaxial layers and nanorods, which have in many respects properties identical to bulk samples and end in several cases with data on quantum wells or nano crystallites. Since it is a didactical review, we present explicitly misconceptions found frequently in submitted or published papers, with the aim to help young scientists entering this field to improve the quality of their submitted manuscripts. We finish with an appendix on quasi two- and one-dimensional exciton cavity polaritons.

[1]  C. Jagadish,et al.  Ultrafast spectroscopy of ZnO/ZnMgO quantum wells , 2009 .

[2]  K. Ellmer Resistivity of polycrystalline zinc oxide films: current status and physical limit , 2001 .

[3]  M. Grundmann,et al.  Optical whispering gallery modes in dodecagonal zinc oxide microcrystals , 2007 .

[4]  G. Heiland,et al.  Electronic Processes in Zinc Oxide , 1959 .

[5]  H. Ahlers,et al.  Magnetism in V-/Mn-doped ZnO layers fabricated on sapphire , 2007 .

[6]  P. Lefebvre,et al.  Comparison of strong coupling regimes in bulk GaAs, GaN and ZnO semiconductor microcavities , 2008, 0810.1811.

[7]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[8]  H. Ohno,et al.  Zener model description of ferromagnetism in zinc-blende magnetic semiconductors , 2000, Science.

[9]  J. Hvam Exciton-exciton interaction and laser emission in high-purity ZnO , 1973 .

[10]  C. Klingshirn,et al.  Surface-state related luminescence in ZnO nanocrystals , 2007 .

[11]  Yusaburo Segawa,et al.  Stimulated emission and optical gain in ZnO epilayers grown by plasma-assisted molecular-beam epitaxy with buffers , 2001 .

[12]  K. Thonke,et al.  Lasing dynamics in single ZnO nanorods. , 2008, Optics express.

[13]  R. Kalia,et al.  Universal behavior of exchange-correlation energy in electron-hole liquid , 1982 .

[14]  G. Heiland,et al.  Zum Einfluß von Wasserstoff auf die elektrische Leitfähigkeit an der Oberfläche von Zinkoxydkristallen , 1957 .

[15]  R. Pässler Basic Model Relations for Temperature Dependencies of Fundamental Energy Gaps in Semiconductors , 1997 .

[16]  David C. Look,et al.  The Future Of ZnO Light Emitters , 2004 .

[17]  Stephan W Koch,et al.  Stimulated Intrinsic Recombination Processes in II–VI Compounds† , 1978 .

[18]  A. Ballman,et al.  HYDROTHERMAL SYNTHESIS OF ZINC OXIDE AND ZINC SULFIDE1 , 1960 .

[19]  D. Snoke When should we say we have observed Bose condensation of excitons? , 2003 .

[20]  C. Klingshirn,et al.  Linear and nonlinear optics, dynamics, and lasing in ZnO bulk and nanostructures , 2008 .

[21]  Ryan Jc,et al.  Band-gap renormalization of optically excited semiconductor quantum wells. , 1993 .

[22]  C. Klingshirn,et al.  Raman studies of ZnO:Co thin films , 2007 .

[23]  T. S. Lee,et al.  Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition , 2003 .

[24]  G. Heiland Feldeffekt und photoleitung an ZnO-einkristallen , 1958 .

[25]  Roman J. B. Dietz,et al.  Co-existence of strongly and weakly localized random laser modes , 2009 .

[26]  Sheng Chu,et al.  Electrically pumped ultraviolet ZnO diode lasers on Si , 2008 .

[27]  C. Klingshirn,et al.  Ordered, uniform-sized ZnO nanolaser arrays , 2007 .

[28]  K. Bohnert,et al.  Gain and Reflection Spectroscopy and the Present Understanding of the Electron–Hole Plasma in II–VI Compounds , 1980 .

[29]  Heinz Kalt,et al.  Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing , 2007 .

[30]  Hartmut Haug,et al.  Optical properties of highly excited direct gap semiconductors , 1981 .

[31]  Tae-Seok Lee,et al.  Excitonic ultraviolet lasing in ZnO-based light emitting devices , 2007 .

[32]  D. C. Reynolds,et al.  Optically pumped ultraviolet lasing from ZnO , 1996 .

[33]  R. Helbig,et al.  Singlett-triplett splitting of the free A-exciton in ZnO , 1974 .

[34]  Akira Ohtomo,et al.  Stimulated emission induced by exciton–exciton scattering in ZnO/ZnMgO multiquantum wells up to room temperature , 2000 .

[35]  J. J. Lander Reactions of Lithium as a donor and an acceptor in ZnO , 1960 .

[36]  M. L. Fuller Twinning in Zinc Oxide , 1944 .

[37]  H. Koinuma,et al.  Room-temperature luminescence of excitons in ZnO/(Mg, Zn)O multiple quantum wells on lattice-matched substrates , 2000 .

[38]  William L. Warren,et al.  Correlation between photoluminescence and oxygen vacancies in ZnO phosphors , 1996 .

[39]  J. W. Nielsen,et al.  THE GROWTH OF LARGE SINGLE CRYSTALS OF ZINC OXIDE1 , 1960 .

[40]  Mengyan Shen,et al.  Optically pumped lasing of ZnO at room temperature , 1991 .

[41]  G. D. Watkins,et al.  Origin of the 6885-cm-1 luminescence lines in ZnO : Vanadium versus copper , 2005 .

[42]  K. Bohnert,et al.  Nonequilibrium properties of electron-hole plasma in direct-gap semiconductors , 1981 .

[43]  J. Hvam,et al.  The Biexciton Levels and Nonlinear Optical Transitions in ZnO , 1983 .

[44]  A. Kavokin,et al.  Whispering gallery polaritons in cylindrical cavities , 2007 .

[45]  M. Cardona,et al.  Valence band symmetry and deformation potentials of ZnO , 1968 .

[46]  Akira Ohtomo,et al.  MgxZn1−xO as a II–VI widegap semiconductor alloy , 1998 .

[47]  C. Weisbuch,et al.  Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. , 1992, Physical review letters.

[48]  G. Visimberga,et al.  Nanolasers from ZnO nanorods as natural resonance cavities , 2010 .

[49]  M. Decker,et al.  The exciton polariton model and the diffusion of excitons in ZnO analyzed by time‐dependent photoluminescence spectroscopy , 2006 .

[50]  V. Ursaki,et al.  A comparative study of guided modes and random lasing in ZnO nanorod structures , 2009 .

[51]  F. Urbach The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids , 1953 .

[52]  C. Klingshirn,et al.  The Luminescence of ZnO under High One- and Two-Quantum Excitation†‡ , 1975 .

[53]  C. Klingshirn ZnO: material, physics and applications. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[54]  Shinzo Takata,et al.  Highly Conductive and Transparent Aluminum Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering , 1984 .

[55]  Hui Cao,et al.  Lasing in random media , 2003 .

[56]  J. Lunney,et al.  Effect of polycrystallinity on the optical properties of highly oriented ZnO grown by pulsed laser deposition , 2004 .

[57]  Diederik S. Wiersma,et al.  Laser physics: Random lasers explained? , 2009 .

[58]  F. A. Majumder,et al.  Stimulated emission of II–VI epitaxial layers , 1994 .

[59]  B. Meyer,et al.  Valence-band ordering and magneto-optic exciton fine structure in ZnO , 2002 .

[60]  Akira Ohtomo,et al.  Band gap engineering based on MgxZn1−xO and CdyZn1−yO ternary alloy films , 2001 .

[61]  Zikang Tang,et al.  Room-temperature gain spectra and lasing in microcrystalline ZnO thin films , 1998 .

[62]  T. Miyata,et al.  Highly transparent and conductive rare earth-doped ZnO thin films prepared by magnetron sputtering , 2000 .

[63]  Broser,et al.  Acceptor-exciton complexes in ZnO: A comprehensive analysis of their electronic states by high-resolution magnetooptics and excitation spectroscopy. , 1988, Physical review. B, Condensed matter.

[64]  D. G. Thomas,et al.  On some observable properties of longitudinal excitons , 1960 .

[65]  A. Yariv,et al.  Electronic Structure of Copper Impurities in ZnO , 1963 .

[66]  O. Schirmer,et al.  The yellow luminescence of zinc oxide , 1970 .

[67]  Chris G. Van de Walle,et al.  Universal alignment of hydrogen levels in semiconductors, insulators and solutions , 2003, Nature.

[68]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[69]  G. Ceder,et al.  First-principles study of native point defects in ZnO , 2000 .

[70]  H. Morkoç,et al.  Excitonic fine structure and recombination dynamics in single-crystalline ZnO , 2004 .

[71]  Mahuya Chakrabarti,et al.  Role of defects in tailoring structural, electrical and optical properties of ZnO , 2009 .

[72]  C. Klingshirn,et al.  Response to “Comment on ‘Some considerations concerning the detection of excitons by field ionization in a Schottky barrier’” – [phys. stat. sol. (b) 239, No. 1, 257–260 (2003)] , 2003 .

[73]  M. Decker,et al.  Temperature dependent band gap and homogeneous line broadening of the exciton emission in ZnO , 2006 .

[74]  D. C. Reynolds,et al.  Electrical properties of bulk ZnO , 1998 .

[75]  C. Solbrig Das Emissionsspektrum gebundener Excitonen in Zinkoxydkristallen in Abhängigkeit von Temperatur und uniaxialer Verspannung , 1968 .

[76]  D. C. Reynolds,et al.  Zeeman Effects in the Edge Emission and Absorption of ZnO , 1965 .

[77]  M. Grün,et al.  Chlorine doping of cubic CdS and ZnS grown by compound source molecular beam epitaxy , 1999 .

[78]  M. Tazawa,et al.  Ultraviolet lasing with low excitation intensity in deep-level emission free ZnO films , 2005 .

[79]  C. Vittoria,et al.  Ferromagnetism in pure wurtzite zinc oxide , 2009 .

[80]  A. R. Hutson Hall Effect Studies of Doped Zinc Oxide Single Crystals , 1957 .

[81]  H. Zeng,et al.  Ordered n-type ZnO nanorod arrays , 2008 .

[82]  Sunglae Cho,et al.  Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn , 1999 .

[83]  J. Lagois Dielectric theory of interacting excitonic resonances , 1977 .

[84]  Atul Gupta,et al.  Effect of Killer Impurities on Optical Properties of ZnO at Low Temperature , 2007 .

[85]  Takafumi Yao,et al.  ZnO as a novel photonic material for the UV region , 2000 .

[86]  A. Waag,et al.  Comparison of linear and nonlinear optical spectra of various ZnO epitaxial layers and of bulk material obtained by different experimental techniques , 2004 .

[87]  J. Hvam,et al.  Luminescence spectra and kinetics of disordered solid solutions , 1999 .

[88]  A. Kavokin,et al.  ZnO as a material mostly adapted for the realization of room-temperature polariton lasers , 2002 .

[89]  W. Y. Liang,et al.  Transmission Spectra of ZnO Single Crystals , 1968 .

[90]  R. Zimmermann,et al.  Many-particle theory of highly excited semiconductors , 1988 .

[91]  J. R. Haynes Experimental Proof of the Existence of a New Electronic Complex in Silicon , 1960 .

[92]  M. Zacharias,et al.  Stimulated emission from ZnO nanorods , 2006 .

[93]  B. Fischer,et al.  Introduction to surface exciton polaritons , 1978 .

[94]  Marius Grundmann,et al.  p‐type conducting ZnO:P microwires prepared by direct carbothermal growth , 2008 .

[95]  C. Klingshirn Über die spontane und stimulierte emission von ZnO nach Zweiquantenanregung , 1973 .

[96]  R. Helbig,et al.  The influence of a magnetic field on the ground and excited states of bound exciton complexes in ZnO , 1981 .

[97]  D. G. Thomas The exciton spectrum of zinc oxide , 1960 .

[98]  R. Dietz,et al.  Random lasing in nanocrystalline ZnO powders , 2010 .

[99]  D. C. Reynolds,et al.  Polariton and Free-Exciton-Like Photoluminescence in ZnO , 2001 .

[100]  C. Klingshirn,et al.  Absolute external luminescence quantum efficiency of zinc oxide , 2008 .

[101]  Mengyan Shen,et al.  High temperature excitonic stimulated emission from ZnO epitaxial layers , 1998 .