miRBase: integrating microRNA annotation and deep-sequencing data

miRBase is the primary online repository for all microRNA sequences and annotation. The current release (miRBase 16) contains over 15 000 microRNA gene loci in over 140 species, and over 17 000 distinct mature microRNA sequences. Deep-sequencing technologies have delivered a sharp rise in the rate of novel microRNA discovery. We have mapped reads from short RNA deep-sequencing experiments to microRNAs in miRBase and developed web interfaces to view these mappings. The user can view all read data associated with a given microRNA annotation, filter reads by experiment and count, and search for microRNAs by tissue- and stage-specific expression. These data can be used as a proxy for relative expression levels of microRNA sequences, provide detailed evidence for microRNA annotations and alternative isoforms of mature microRNAs, and allow us to revisit previous annotations. miRBase is available online at: http://www.mirbase.org/.

[1]  G. Ruvkun,et al.  A uniform system for microRNA annotation. , 2003, RNA.

[2]  Sam Griffiths-Jones,et al.  The microRNA Registry , 2004, Nucleic Acids Res..

[3]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[4]  P. Bork,et al.  Literature mining for the biologist: from information retrieval to biological discovery , 2006, Nature Reviews Genetics.

[5]  Stijn van Dongen,et al.  miRBase: microRNA sequences, targets and gene nomenclature , 2005, Nucleic Acids Res..

[6]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[7]  N. Rajewsky,et al.  Discovering microRNAs from deep sequencing data using miRDeep , 2008, Nature Biotechnology.

[8]  J. Tate,et al.  The RNA WikiProject: community annotation of RNA families. , 2008, RNA.

[9]  Doron Betel,et al.  The microRNA.org resource: targets and expression , 2007, Nucleic Acids Res..

[10]  A. Valencia,et al.  Linking genes to literature: text mining, information extraction, and retrieval applications for biology , 2008, Genome Biology.

[11]  Gregory J. Hannon,et al.  Sorting of Small RNAs into Arabidopsis Argonaute Complexes Is Directed by the 5′ Terminal Nucleotide , 2008, Cell.

[12]  D. Bartel,et al.  Criteria for Annotation of Plant MicroRNAs , 2008, The Plant Cell Online.

[13]  E. Lai,et al.  Endogenous RNA Interference Provides a Somatic Defense against Drosophila Transposons , 2008, Current Biology.

[14]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[15]  Tongbin Li,et al.  miRecords: an integrated resource for microRNA–target interactions , 2008, Nucleic Acids Res..

[16]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[17]  M. Levine,et al.  miRTRAP, a computational method for the systematic identification of miRNAs from high throughput sequencing data , 2010, Genome Biology.

[18]  M. Gerstein,et al.  Unlocking the secrets of the genome , 2009, Nature.

[19]  Martin Reczko,et al.  The database of experimentally supported targets: a functional update of TarBase , 2008, Nucleic Acids Res..

[20]  Robert D. Finn,et al.  Rfam: updates to the RNA families database , 2008, Nucleic Acids Res..

[21]  Nectarios Koziris,et al.  DIANA-microT web server: elucidating microRNA functions through target prediction , 2009, Nucleic Acids Res..

[22]  G. Hannon,et al.  Evolutionary flux of canonical microRNAs and mirtrons in Drosophila , 2010, Nature Genetics.

[23]  C. Nusbaum,et al.  Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. , 2010, Genes & development.

[24]  S. Griffiths-Jones,et al.  Functional Shifts in Insect microRNA Evolution , 2010, Genome biology and evolution.