Approximating loops in a shortest homology basis from point data

Inference of topological and geometric attributes of a hidden manifold from its point data is a fundamental problem arising in many scientific studies and engineering applications. In this paper we present an algorithm to compute a set of loops from a point data that presumably sample a smooth manifold <i>M</i> ⊂ <b>R</b><sup><i>d</i></sup>. These loops approximate a <i>shortest</i> basis of the one dimensional homology group H<sub>1</sub>(<i>M</i>) over coefficients in finite field <b>Z</b><sup>2</sup>. Previous results addressed the issue of computing the rank of the homology groups from point data, but there is no result on approximating the shortest basis of a manifold from its point sample. In arriving our result, we also present a polynomial time algorithm for computing a shortest basis of H<sub>1</sub> (Κ) for any finite <i>simplicial complex Κ</i> whose edges have non-negative weights.

[1]  Steve Oudot,et al.  Towards persistence-based reconstruction in euclidean spaces , 2007, SCG '08.

[2]  Tamal K. Dey,et al.  Optimal homologous cycles, total unimodularity, and linear programming , 2010, STOC '10.

[3]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[4]  I. Hassan Embedded , 2005, The Cyber Security Handbook.

[5]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[6]  David Cohen-Steiner,et al.  Vines and vineyards by updating persistence in linear time , 2006, SCG '06.

[7]  Mikhail Belkin,et al.  Discrete laplace operator on meshed surfaces , 2008, SCG '08.

[8]  Chao Chen,et al.  Hardness Results for Homology Localization , 2010, SODA.

[9]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[10]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[11]  Leonidas J. Guibas,et al.  Manifold Reconstruction in Arbitrary Dimensions Using Witness Complexes , 2007, SCG '07.

[12]  Jeff Erickson,et al.  Greedy optimal homotopy and homology generators , 2005, SODA '05.

[13]  Erin W. Chambers,et al.  Homology flows, cohomology cuts , 2009, STOC '09.

[14]  Tamal K. Dey,et al.  Manifold reconstruction from point samples , 2005, SODA '05.

[15]  Chao Chen,et al.  Measuring and Localing Homology Classes , 2007, ArXiv.

[16]  Tamal K. Dey,et al.  Cut locus and topology from surface point data , 2009, SCG '09.

[17]  Erin W. Chambers,et al.  Minimum cuts and shortest homologous cycles , 2009, SCG '09.

[18]  I. Holopainen Riemannian Geometry , 1927, Nature.

[19]  Frédéric Chazal,et al.  Topology guaranteeing manifold reconstruction using distance function to noisy data , 2006, SCG '06.

[20]  Daniel Freedman,et al.  Measuring and Localizing Homology Classes , 2008 .

[21]  Stephen Smale,et al.  Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..

[22]  Mikhail Belkin,et al.  Towards a theoretical foundation for Laplacian-based manifold methods , 2005, J. Comput. Syst. Sci..

[23]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[24]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[25]  Jeff Erickson,et al.  Tightening non-simple paths and cycles on surfaces , 2006, SODA '06.

[26]  Afra Zomorodian,et al.  Localized Homology , 2007, IEEE International Conference on Shape Modeling and Applications 2007 (SMI '07).

[27]  R. Ho Algebraic Topology , 2022 .

[28]  Chao Chen,et al.  Quantifying Homology Classes , 2008, STACS.