A Functional Approach to Computability on Real Numbers

The aim of this thesis is to contribute to close the gap existing between the theory of computable analysis and actual computation. In order to study computability over real numbers we use several tools peculiar to the theory of programming languages. In particular we introduce a special kind of typed lambda calculus as an appropriate formalism for describing computations on real numbers. Furthermore we use domain theory, to give semantics to this typed lambda calculus and as a conseguence to give a notion of computability on real numbers. We discuss the adequacy of Scott-Domains as domains for representing real numbers. We relate the Scott topology on such domains to the euclidean topology on IR. Domain theory turns out to be useful also in the study of higher order functions. In particular one of the most important results contained in this thesis concerns the characterisation of the topological properties of the computable higher order functions on reals. Our approach allows moreover to phrase and discuss w.r.t. real numbers issues of programming languages. We address the problem of defining an implementation of real numbers as an abstract data type. Finally we investigate algorithms for carrying out efficient computations on reals.

[1]  Ker-I Ko,et al.  Reducibilities on Real Numbers , 1984, Theor. Comput. Sci..

[2]  L.E.J. Brouwer 1924 D – Mathematics. – “Beweis, dass jede volle Funktion gleichmässig stetig ist” , 1975 .

[3]  Michael B. Smyth,et al.  Effectively given Domains , 1977, Theor. Comput. Sci..

[4]  A. Grzegorczyk On the definitions of computable real continuous functions , 1957 .

[5]  J. Shepherdson Computational Complexity of Real Functions , 1985 .

[6]  Dana S. Scott,et al.  Outline of a Mathematical Theory of Computation , 1970 .

[7]  John R. Myhill,et al.  Criteria of constructibility for real numbers , 1953, Journal of Symbolic Logic.

[8]  W. Rudin Principles of mathematical analysis , 1964 .

[9]  Ernst Specker,et al.  Nicht konstruktiv beweisbare Sätze der Analysis , 1949, Journal of Symbolic Logic.

[10]  Hans-Juergen Boehm,et al.  Constructive real interpretation of numerical programs , 1987, SIGPLAN '87.

[11]  Christoph Kreitz,et al.  Representations of the real numbers and of the open subsets of the set of real numbers , 1987, Ann. Pure Appl. Log..

[12]  Hans-Juergen Boehm,et al.  Exact real arithmetic: a case study in higher order programming , 1986, LFP '86.

[13]  E. Wiedmer,et al.  Computing with Infinite Objects , 1980, Theor. Comput. Sci..

[14]  Klaus Weihrauch,et al.  Embedding Metric Spaces Into CPO's , 1981, Theor. Comput. Sci..

[15]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[16]  David Turner,et al.  Research topics in functional programming , 1990 .

[17]  Norbert Th. Müller Subpolynomial Complexity Classes of Real Functions and Real Numbers , 1986, ICALP.

[18]  Jean Vuillemin,et al.  Exact real computer arithmetic with continued fractions , 1988, IEEE Trans. Computers.

[19]  Michael B. Smyth,et al.  Quasi Uniformities: Reconciling Domains with Metric Spaces , 1987, MFPS.

[20]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[21]  Mark Braverman,et al.  On the complexity of real functions , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[22]  Alistair H. Lachlan,et al.  Recursive real numbers , 1963, Journal of Symbolic Logic.

[23]  Robert Cartwright,et al.  Exact real arithmetic formulating real numbers as functions , 1990 .

[24]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[25]  Christoph Kreitz,et al.  Theory of Representations , 1985, Theor. Comput. Sci..

[26]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[27]  A. Avizienis Binary-Compatible Signed-Digit Arithmetic , 1899 .

[28]  John Myhill,et al.  What Is a Real Number , 1972 .