A mixed variational formulation for a class of contact problems in viscoelasticity

We consider a deformable body in frictionless unilateral contact with a moving rigid obstacle. The material is described by a viscoelastic law with short memory, and the contact is modeled by a Signorini condition with a time-dependent gap. The existence and uniqueness results for a weak formulation based on a Lagrange multipliers approach are provided. Furthermore, we discuss an efficient algorithm approximating the weak solution for the more general case of a two-body contact problem including friction. In order to illustrate the theory we present two numerical examples in 3D.

[1]  Peter Wriggers,et al.  Frictionless 2D Contact formulations for finite deformations based on the mortar method , 2005 .

[2]  Jaroslav Haslinger,et al.  Numerical methods for unilateral problems in solid mechanics , 1996 .

[3]  J. J. Telega,et al.  Models and analysis of quasistatic contact , 2004 .

[4]  Guillaume Drouet,et al.  Optimal Convergence for Discrete Variational Inequalities Modelling Signorini Contact in 2D and 3D without Additional Assumptions on the Unknown Contact Set , 2015, SIAM J. Numer. Anal..

[5]  Jinchao Xu,et al.  Domain decomposition methods in science and engineering XIX , 2011 .

[6]  M. Sofonea,et al.  Stress formulation for frictionless contact of an elastic-perfectly-plastic body , 2004 .

[7]  Mircea Sofonea On a contact problem for elastic-viscoplastic bodies , 1997 .

[8]  J. Haslinger,et al.  Solution of Variational Inequalities in Mechanics , 1988 .

[9]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[10]  A. Matei An evolutionary mixed variational problem arising from frictional contact mechanics , 2014 .

[11]  Ivan Hlaváček,et al.  Contact between elastic bodies. I. Continuous problems , 1980 .

[12]  Mircea Sofonea,et al.  ON FRICTIONLESS CONTACT BETWEEN TWO ELASTIC-VISCOPLASTIC BODIES , 1997 .

[13]  Peter Kuster,et al.  Domain Decomposition Methods In Science And Engineering Xix , 2016 .

[14]  K. Willner,et al.  A dual Lagrange method for contact problems with regularized contact conditions , 2014 .

[15]  Jean-Loup Chenot,et al.  Numerical formulations and algorithms for solving contact problems in metal forming simulation , 1999 .

[16]  Pierre Montmitonnet,et al.  Numerical formulation for solving soil/tool interaction problem involving large deformation , 2005 .

[17]  N. Renon Simulation numérique par éléments finis des grandes déformations des sols : application à la scarification , 2002 .

[18]  Rolf Krause,et al.  Monotone Multigrid Methods on Nonmatching Grids for Nonlinear Multibody Contact Problems , 2003, SIAM J. Sci. Comput..

[19]  R. Kornhuber,et al.  Adaptive multigrid methods for Signorini’s problem in linear elasticity , 2001 .

[20]  Peter Wriggers,et al.  IUTAM Symposium on Computational Methods in Contact Mechanics , 2007 .

[21]  Mircea Sofonea,et al.  NUMERICAL ANALYSIS OF A CONTACT PROBLEM IN RATE-TYPE VISCOPLASTICITY , 2001 .

[22]  Barbara I. Wohlmuth,et al.  Efficient Algorithms for Problems with Friction , 2007, SIAM J. Sci. Comput..

[23]  W. Han,et al.  A frictionless contact problem for viscoelastic materials , 2002 .

[24]  G. Fichera Boundary Value Problems of Elasticity with Unilateral Constraints , 1973 .

[25]  Barbara I. Wohlmuth,et al.  A Primal-Dual Active Set Algorithm for Three-Dimensional Contact Problems with Coulomb Friction , 2008, SIAM J. Sci. Comput..

[26]  Kai Willner,et al.  Kontinuums- und Kontaktmechanik , 2003 .

[27]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[28]  Mircea Sofonea,et al.  Numerical analysis of a frictionless contact problem for elastic-viscoplastic materials , 2000 .

[29]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[30]  P. Alart,et al.  A mixed formulation for frictional contact problems prone to Newton like solution methods , 1991 .

[31]  Ivan Hlaváček,et al.  Contact between elastic bodies. III. Dual finite element analysis , 1981 .

[32]  W. Han,et al.  Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity , 2002 .

[33]  Barbara Wohlmuth,et al.  A primal–dual active set strategy for non-linear multibody contact problems , 2005 .

[34]  K. Willner,et al.  A dual Lagrange method for contact problems with regularized frictional contact conditions: Modelling micro slip , 2015 .

[35]  Barbara I. Wohlmuth,et al.  An Optimal A Priori Error Estimate for Nonlinear Multibody Contact Problems , 2005, SIAM J. Numer. Anal..

[36]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[37]  Numerical analysis and simulations of quasistatic frictionless contact problems , 2001 .

[38]  M. Sofonea,et al.  On the frictionless unilateral contact of two viscoelastic bodies , 2003 .