Edge localized modes in DIII-D high performance discharges

A new understanding of edge localized modes (ELMs) in tokamak discharges is emerging (Snyder P B et al 2002 Phys. Plasmas 9 2037), in which the ELM is an essentially ideal magnetohydrodynamic (MHD) instability and the ELM severity is determined by the radial width of the linearly unstable MHD kink modes. A detailed, comparative study of the penetration into the core of the respective linear instabilities in a standard DIII-D ELMing, high confinement mode (H-mode) discharge, with that for two relatively high performance discharges shows that these are also encompassed within the framework of the new model. These instabilities represent the key limiting factor in extending the high performance of these discharges. In the standard ELMing H-mode, the MHD instabilities are highly localized in the outer few per cent flux surfaces, and the ELM is benign, causing only a small temporary drop in the energy confinement. In contrast, for both a very high confinement mode and an H-mode with a broad internal transport barrier extending over the entire core and coalesced with the edge transport barrier, the linearly unstable modes penetrate well into the mid radius and the corresponding consequences for global confinement are significantly more severe. The ELM accordingly results in an irreversible loss of the high performance.This article was due to be published in issue 9 of Plasma Phys. Control. Fusion. To access this special issue, please follow this link: http://www.iop.org/EJ/toc/0741-3335/45/9

[1]  L. Lao,et al.  ELMs and constraints on the H-mode pedestal: peeling–ballooning stability calculation and comparison with experiment , 2004 .

[2]  T. Petrie,et al.  Transport of edge localized modes energy and particles into the scrape off layer and divertor of DIII-D , 2003 .

[3]  L. Lao,et al.  PREDICTIVE CAPABILITY OF MHD STABILITY LIMITS IN HIGH PERFORMANCE DIII-D DISCHARGES , 2002 .

[4]  T. Petrie,et al.  QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALLOONING MODES , 2002 .

[5]  L. Lao,et al.  Edge localized modes and the pedestal: A model based on coupled peeling–ballooning modes , 2002 .

[6]  H. Wilson,et al.  Numerical studies of edge localized instabilities in tokamaks , 2002 .

[7]  S. Medvedev,et al.  H-Mode Pedestal Characteristics and MHD Stability of the Edge Plasma in Alcator C-Mod , 2002 .

[8]  G. J. Jackson,et al.  Dependence of edge stability on plasma shape and local pressure gradients in the DIII-D and JT-60U tokamaks , 2001 .

[9]  L. L. Lao,et al.  Modification of tokamak edge instability character through control of ballooning mode second stability regime accessibility , 2000 .

[10]  S. Saarelma,et al.  ELM phenomenon as an interaction between bootstrap-current driven peeling modes and pressure-driven ballooning modes , 2000 .

[11]  L. Lao,et al.  Modification of high mode pedestal instabilities in the DIII-D tokamak , 2000 .

[12]  L. L. Lao,et al.  The Effect of Plasma Shape on H-Mode Pedestal Characteristics on DIII-D , 1999 .

[13]  O. Sauter,et al.  Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime , 1999 .

[14]  L. Lao,et al.  Ideal magnetohydrodynamic stability of the tokamak high-confinement-mode edge region , 1999 .

[15]  R. Miller,et al.  Improved magnetohydrodynamic stability through optimization of higher order moments in cross-section shape of tokamaks , 1999 .

[16]  L. Lao,et al.  EFFECTS OF PLASMA SHAPE AND PROFILES ON EDGE STABILITY IN DIII-D , 1998 .

[17]  Robert L. Miller,et al.  H-mode pedestal characteristics in ITER shape discharges on DIII-D , 1998 .

[18]  R. L. Miller,et al.  Magnetohydrodynamic stability of tokamak edge plasmas , 1998 .

[19]  J. Connor,et al.  A review of models for ELMs , 1998 .

[20]  B. Alper,et al.  Identification of external kink modes in JET , 1998 .

[21]  L. L. Lao,et al.  Direct Measurement of the Radial Electric Field in Tokamak Plasmas using the Stark Effect , 1997 .

[22]  Robert L. Miller,et al.  Stability of negative central magnetic shear discharges in the DIII-D tokamak , 1997 .

[23]  Olivier Sauter,et al.  Stable equilibria for bootstrap-current driven low aspect ratio tokamaks , 1996 .

[24]  M. Mauel,et al.  Demonstration of high‐performance negative central magnetic shear discharges in the DIII‐D tokamak , 1996 .

[25]  H. Zohm Edge localized modes (ELMs) , 1996 .

[26]  Lao,et al.  Enhanced confinement and stability in DIII-D discharges with reversed magnetic shear. , 1995, Physical review letters.

[27]  H. Zohm,et al.  ELM studies on DIII-D and a comparison with ASDEX results , 1995 .

[28]  Turnbull,et al.  High Beta and Enhanced Confinement in a Second Stable Core VH-Mode Advanced Tokamak. , 1995, Physical review letters.

[29]  G. Staebler,et al.  Investigations of VH-mode in DIII-D and JET , 1993 .

[30]  Geist,et al.  H mode of the W 7-AS stellarator. , 1993, Physical review letters.

[31]  C. A. Steed,et al.  The JET preliminary tritium experiment , 1992 .

[32]  L. L. Lao,et al.  Confinement and stability of VH-mode discharges in the DIII-D tokamak , 1992 .

[33]  L. Lao,et al.  Polarimetry of motional Stark effect and determination of current profiles in DIII-D (invited) , 1992 .

[34]  W. Zimmerman,et al.  Three-dimensional viscous fingering : a numerical study , 1992 .

[35]  J. Manickam The role of edge current density on kink mode stability and its implication for magnetohydrodynamic activity associated with edge localized modes , 1992 .

[36]  L. L. Lao,et al.  Very high confinement discharges in DIII‐D after boronization , 1992 .

[37]  W. Kerner,et al.  Studies of edge localized modes on ASDEX , 1992 .

[38]  Lao,et al.  Regime of very high confinement in the boronized DIII-D tokamak. , 1991, Physical review letters.

[39]  J. Manickam,et al.  Characteristics of high frequency ELM precursors and edge stability in the PBX-M tokamak , 1990 .

[40]  L. L. Lao,et al.  Equilibrium analysis of current profiles in tokamaks , 1990 .

[41]  L. L. Lao,et al.  Confinement physics of H-mode discharges in DIII-D , 1989 .

[42]  Lao,et al.  Study of giant edge-localized modes in DIII-D and comparison with ballooning theory. , 1988, Physical review letters.

[43]  Steven Paul Hirshman,et al.  Finite‐aspect‐ratio effects on the bootstrap current in tokamaks , 1988 .

[44]  Bell,et al.  Bootstrap current in TFTR. , 1988, Physical review letters.

[45]  Hong,et al.  Observation of an improved energy-confinement regime in neutral-beam-heated divertor discharges in the DIII-D tokamak. , 1987, Physical review letters.

[46]  R. Gruber,et al.  β limits in H -mode-like discharges , 1986 .

[47]  M. C. Zarnstorff,et al.  Experimental observation of neoclassical currents in a plasma , 1984 .

[48]  F. Wagner,et al.  Regime of Improved Confinement and High Beta in Neutral-Beam-Heated Divertor Discharges of the ASDEX Tokamak , 1982 .

[49]  L. C. Bernard,et al.  GATO: An MHD stability code for axisymmetric plasmas with internal separatrices , 1981 .

[50]  M. Chance,et al.  The second region of stability against ballooning modes , 1981 .

[51]  J. Wesson,et al.  Finite resistivity instabilities of a sheet pinch , 1966 .

[52]  J. Gillis,et al.  Methods in Computational Physics , 1964 .

[53]  T. Osborne,et al.  Utilization of Libeam Polarimetry for Edge Current Determination On DIII-D , 2002 .

[54]  Giuseppe Gorini,et al.  Advanced Diagnostics for Magnetic and Inertial Fusion , 2002 .

[55]  M. V. Hellermann,et al.  SPECIAL TOPIC: Particle and energy transport during the first tritium experiments on JET , 1993 .

[56]  J. Rappaz,et al.  Finite element methods in linear ideal magnetohydrodynamics , 1985 .

[57]  R. Gruber,et al.  MHD-limits to plasma confinement , 1984 .