Recreating passenger mode choice-sets for transport simulation: A case study of London, UK

Urban transport infrastructure is under increasing pressure from rising travel demand in many cities worldwide. It is no longer sustainable or even economically viable to cope with increased demand...

[1]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[2]  Ying Jin,et al.  Assessing the discrepancies between recorded and commonly assumed journey times in London , 2016 .

[3]  Taghi M. Khoshgoftaar,et al.  A Study on the Relationships of Classifier Performance Metrics , 2009, 2009 21st IEEE International Conference on Tools with Artificial Intelligence.

[4]  J. Friedman Stochastic gradient boosting , 2002 .

[5]  Hichem Omrani,et al.  Predicting Travel Mode of Individuals by Machine Learning , 2015 .

[6]  Dan Zhao,et al.  Travel Mode Choice Modeling Based on Improved Probabilistic Neural Network , 2010 .

[7]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[8]  Tilmann Bruckhaus The Business Impact of Predictive Analytics , 2007 .

[9]  Xiangliang Zhang,et al.  An up-to-date comparison of state-of-the-art classification algorithms , 2017, Expert Syst. Appl..

[10]  Christophe Mues,et al.  An experimental comparison of classification algorithms for imbalanced credit scoring data sets , 2012, Expert Syst. Appl..

[11]  Julian Hagenauer,et al.  A comparative study of machine learning classifiers for modeling travel mode choice , 2017, Expert Syst. Appl..

[12]  G.E. Cantarella,et al.  Modeling transportation mode choice through artificial neural networks , 2003, Fourth International Symposium on Uncertainty Modeling and Analysis, 2003. ISUMA 2003..

[13]  Chris Eliasmith,et al.  Hyperopt-Sklearn: Automatic Hyperparameter Configuration for Scikit-Learn , 2014, SciPy.

[14]  Joan L. Walker,et al.  Generalized random utility model , 2002, Math. Soc. Sci..

[15]  Chi Xie,et al.  WORK TRAVEL MODE CHOICE MODELING USING DATA MINING: DECISION TREES AND NEURAL NETWORKS , 2002 .

[16]  H. Nyquist Restricted Estimation of Generalized Linear Models , 1991 .

[17]  David A. Hensher,et al.  A comparison of the predictive potential of artificial neural networks and nested logit models for commuter mode choice , 1997 .

[18]  Chenfeng Xiong,et al.  Decision tree method for modeling travel mode switching in a dynamic behavioral process , 2015 .

[19]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[20]  Richard Simon,et al.  Bias in error estimation when using cross-validation for model selection , 2006, BMC Bioinformatics.

[21]  Kevin Leyton-Brown,et al.  An Efficient Approach for Assessing Hyperparameter Importance , 2014, ICML.

[22]  Y Jin,et al.  A NEW LAND USE AND TRANSPORT INTERACTION MODEL FOR LONDON AND ITS SURROUNDING REGIONS , 2002 .

[23]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[24]  Gerhard Tutz,et al.  Multinomial logit models with implicit variable selection , 2013, Adv. Data Anal. Classif..

[25]  Anjali Awasthi,et al.  Prediction of Individual Travel Mode with Evidential Neural Network Model , 2013 .

[26]  Jian-Chuan Xian-Yu,et al.  Travel Mode Choice Analysis Using Support Vector Machines , 2011 .

[27]  Chris Eliasmith,et al.  Hyperopt: a Python library for model selection and hyperparameter optimization , 2015 .

[28]  Rich Caruana,et al.  Predicting good probabilities with supervised learning , 2005, ICML.

[29]  Yunlong Zhang,et al.  Travel Mode Choice Modeling with Support Vector Machines , 2008 .

[30]  Hjp Harry Timmermans,et al.  Using ensembles of decision trees to predict transport mode choice decisions: effects on predictive success and uncertainty estimates , 2014 .

[31]  Giulio Erberto Cantarella,et al.  Multilayer Feedforward Networks for Transportation Mode Choice Analysis: An Analysis and a Comparison with Random Utility Models , 2005 .