Time-variable gravity potential components for optical clock comparisons and the definition of international time scales

[1]  Validation of GOCE Gravity Field Models in Germany , 2015 .

[2]  Carine Bruyninx,et al.  Development of a European Combined Geodetic Network (ECGN) , 2005 .

[3]  A H Dodson,et al.  Using continuous GPS and absolute gravity to separate vertical land movements and changes in sea-level at tide-gauges in the UK , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  P. K. Seidelmann,et al.  The IAU 2000 Resolutions for Astrometry, Celestial Mechanics, and Metrology in the Relativistic Framework: Explanatory Supplement , 2003, astro-ph/0303376.

[5]  Gerhard Jentzsch,et al.  Earth tides and ocean tidal loading , 1997 .

[6]  Wei Zhang,et al.  An optical lattice clock with accuracy and stability at the 10−18 level , 2013, Nature.

[7]  M. Zucco,et al.  High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link , 2014, 1404.0395.

[8]  D. Wineland,et al.  Frequency comparison of two high-accuracy Al+ optical clocks. , 2009, Physical review letters.

[9]  Helen S. Margolis,et al.  Timekeepers of the future , 2014, Nature Physics.

[10]  J. Wahr,et al.  Tides for a convective Earth , 1999 .

[11]  Peter Wolf,et al.  Relativistic corrections for time and frequency transfer in optical fibres , 2014, 2014 European Frequency and Time Forum (EFTF).

[12]  Heiner Denker,et al.  Regional Gravity Field Modeling: Theory and Practical Results , 2013 .

[14]  M. Ekman Impacts of geodynamic phenomena on systems for height and gravity , 1989 .

[15]  R. Dill,et al.  Numerical simulations of global‐scale high‐resolution hydrological crustal deformations , 2013 .

[16]  J. Wahr,et al.  A comparison of annual vertical crustal displacements from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe , 2007 .

[17]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[18]  Xavier Collilieux,et al.  Nontidal ocean loading: amplitudes and potential effects in GPS height time series , 2012, Journal of Geodesy.

[19]  Gerard Petit,et al.  Relativistic theory for time comparisons: a review , 2005 .

[20]  R. Ray,et al.  Barometric Tides from ECMWF Operational Analyses , 2003 .

[21]  Petra Döll,et al.  GRACE observations of changes in continental water storage , 2006 .

[22]  H. Schuh,et al.  Atmospheric Effects in Space Geodesy , 2013 .

[23]  W. Farrell A Discussion on the measurement and interpretation of changes of strain in the Earth - Earth tides, ocean tides and tidal loading , 1973, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[24]  Thomas Udem,et al.  Optical frequency transfer over a single-span 1840 km fiber link , 2013, CLEO: 2013.

[25]  P. Döll,et al.  A global hydrological model for deriving water availability indicators: model tuning and validation , 2003 .

[26]  K. Stock,et al.  Aspects of quality assurance in monitoring solar UV irradiance , 2003 .

[27]  Amale Kanj,et al.  Time and frequency comparisons with optical fiber links , 2014 .

[28]  H. Wenzel Tide-generating potential for the earth , 1997 .

[29]  J. Ihde,et al.  Gravity field variations from superconducting gravimeters for GRACE validation , 2009 .

[30]  Walter H. F. Smith,et al.  New, improved version of generic mapping tools released , 1998 .

[31]  Jun Ye,et al.  Coherent optical phase transfer over a 32-km fiber with 1 s instability at 10{-17}. , 2007, Physical review letters.

[32]  K. Mikula,et al.  A conventional value for the geoid reference potential $$W_{0}$$W0 , 2016 .

[33]  T. Gruber,et al.  Non-tidal atmospheric and oceanic mass variations and their impact on GRACE data analysis , 2012 .

[34]  Time too good to be true , 2006 .

[35]  T. Jahr,et al.  Hydrological signals in gravity — foe or friend? , 2007 .

[36]  D. Piester,et al.  International timescales with optical clocks (ITOC) , 2013, 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC).

[37]  Jun Ye,et al.  Sr Lattice Clock at 1 × 10–16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock , 2008, Science.

[38]  A. Bjerhammar,et al.  On a relativistic geodesy , 1985 .

[39]  A. Ludlow,et al.  An Atomic Clock with 10–18 Instability , 2013, Science.

[40]  Olivier Francis,et al.  Global charts of ocean tide loading effects , 1990 .

[41]  M Fujieda,et al.  Direct comparison of optical lattice clocks with an intercontinental baseline of 9000 km. , 2014, Optics letters.

[42]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[43]  Manoj Das,et al.  Cryogenic optical lattice clocks , 2015, Nature Photonics.

[44]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[45]  Gerard Petit,et al.  Relativistic theory for clock syntonization and the realization of geocentric coordinate times. , 1995 .

[46]  Véronique Dehant,et al.  Tidal Parameters for An Inelastic Earth , 1987 .

[47]  Ying Li,et al.  Direct Comparison of Distant Optical Lattice Clocks at the 10-16 Uncertainty , 2011, 1108.2774.

[48]  Shailen D. Desai,et al.  Observing the pole tide with satellite altimetry , 2002 .

[49]  J. Lodewyck,et al.  Atomic clocks: new prospects in metrology and geodesy , 2013, 1308.6766.

[50]  Tetsuya Ido,et al.  All-optical link for direct comparison of distant optical clocks. , 2011, Optics express.

[51]  T. Baker,et al.  An estimate of the errors in gravity ocean tide loading computations , 2005 .

[52]  Frank Flechtner,et al.  Simulating high‐frequency atmosphere‐ocean mass variability for dealiasing of satellite gravity observations: AOD1B RL05 , 2013 .

[53]  T L Nicholson,et al.  Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty , 2014, Nature Communications.

[54]  Duncan Carr Agnew,et al.  NLOADF: A program for computing ocean‐tide loading , 1997 .

[55]  R. Nelson,et al.  Relativistic time transfer in the vicinity of the Earth and in the solar system , 2011 .

[56]  David G. Harkrider,et al.  Surface waves in multilayered elastic media. Part II. Higher mode spectra and spectral ratios from point sources in plane layered Earth models , 1970, Bulletin of the Seismological Society of America.

[57]  S. Williams,et al.  Ocean loading deformations caused by storm surges on the northwest European shelf , 2006 .

[58]  Marc A. Weiss,et al.  The relativistic redshift with 3×10−17 uncertainty at NIST, Boulder, Colorado, USA , 2003 .

[59]  L. Longuevergne,et al.  Local hydrology, the Global Geodynamics Project and CHAMP/GRACE perspective: some case studies , 2004 .

[60]  W. Peltier GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACE , 2004 .

[61]  Christian Chardonnet,et al.  Ultra-stable long distance optical frequency distribution using the Internet fiber network and application to high-precision molecular spectroscopy , 2012, Optics express.

[62]  Torsten Hartmann,et al.  The HW95 tidal potential catalogue , 1995 .

[63]  H.-G. Wenzel,et al.  The nanogal software : Earth tide data processing package ETERNA 3.30 , 1996 .

[64]  Peter Wolf,et al.  Relativistic theory for time and frequency transfer to order c -3 , 2000, gr-qc/0010108.

[65]  David Eriksson,et al.  Continental hydrology loading observed by VLBI measurements , 2011, Journal of Geodesy.

[66]  C Sanner,et al.  Single-Ion Atomic Clock with 3×10(-18) Systematic Uncertainty. , 2016, Physical review letters.