The black hole candidate XTE J1752-223 towards and in quiescence: optical and simultaneous X-ray-radio observations

We present optical, X-ray and radio observations of the black hole transient (BHT) XTE J1752−223 towards and in quiescence. Optical photometry shows that the quiescent magnitude of XTE J1752−223 is fainter than 24.4 mag in the iband. A comparison with measurements of the source during its 2009-2010 outburst shows that the outburst amplitude is more than 8 mag in the iband. Known X-ray properties of the source combined with the faintness of the quiescence optical counterpart and the large outburst optical amplitude point towards a short orbital-period system (Porb 6.8 h) with an M type (or later) mass donor, at a distance of 3.5 d 8 kpc. Simultaneous X-ray and radio data were collected with Chandra and the Expanded Very Large Array (EVLA), allowing constraints to be placed on the quies- cent X-ray and radio flux of XTE J1752−223. Furthermore, using data covering the final stage of the outburst decay, we investigated the low-luminosity end of the X-ray-radio correlation for this source and compared it with other BHTs. We found that XTE J1752−223 adds to the number of outliers with respect to the 'standard' X-ray-radio luminosity relation. Furthermore, XTE J1752−223 is the second source, after the BHT H1743−322, that shows a transition from the region of the outliers towards the 'standard' correlation at low luminosity. Finally, we re- port on a faint, variable X-ray source we discovered with Chandra at an angular distance of ∼2.9 arcsec to XTE J1752−223 and at a position angle consistent with that of the radio jets previously observed from the BHT. We discuss the possibility that we detected X-ray emission associated with a jet from XTE J1752−223.

[1]  K. O'Brien,et al.  A late jet rebrightening revealed from multiwavelength monitoring of the black hole candidate XTE J1752-223 , 2011, 1109.3654.

[2]  J. Rodriguez,et al.  First simultaneous multi-wavelength observations of the black hole candidate IGR J17091 3624 ATCA, INTEGRAL, Swift, and RXTE views of the 2011 outburst , 2011, 1108.0666.

[3]  G. Nelemans,et al.  A DEEP RADIO SURVEY OF HARD STATE AND QUIESCENT BLACK HOLE X-RAY BINARIES , 2011, 1106.0097.

[4]  C. B. Markwardt,et al.  SWIFT OBSERVATIONS OF MAXI J1659−152: A COMPACT BINARY WITH A BLACK HOLE ACCRETOR , 2011, 1104.5228.

[5]  J. Miller-Jones,et al.  An accurate position for the black hole candidate XTE J1752―223: re-interpretation of the VLBI data , 2011, 1103.2826.

[6]  M. Coriat,et al.  Radiatively efficient accreting black holes in the hard state: the case study of H1743-322 , 2011, 1101.5159.

[7]  H. Krimm,et al.  DISCOVERY AND MONITORING OF A NEW BLACK HOLE CANDIDATE XTE J1752−223 WITH RXTE: RMS SPECTRUM EVOLUTION, BLACK HOLE MASS, AND THE SOURCE DISTANCE , 2010, 1008.0597.

[8]  T. Maccarone,et al.  Black hole candidate XTE J1752−223: Swift observations of canonical states during outburst , 2010, 1007.5430.

[9]  T. Maccarone,et al.  Limits on the quiescent radio emission from the black hole binaries GRO J1655-40 and XTE J1550-564 , 2010, 1007.2313.

[10]  Zhongmu Li,et al.  The effects of stellar population synthesis on the distributions of the asteroseismic observables νmax and Δν of red-clump stars , 2010, 1007.1752.

[11]  N. Kawai,et al.  MAXI GSC observations of a spectral state transition in the black hole candidate XTE J1752-223 , 2010, 1007.0801.

[12]  X. D. Li,et al.  ORBITAL PERIOD AND OUTBURST LUMINOSITY OF TRANSIENT LOW MASS X-RAY BINARIES , 2010, 1006.0057.

[13]  D. Bhattacharya,et al.  The hard state of black hole candidates: XTEJ1752-223 , 2010, 1003.0477.

[14]  D. Steeghs,et al.  Following the 2008 outburst decay of the black hole candidate H 1743-322 in X-ray and radio , 2009, 0909.2632.

[15]  Bryan Butler,et al.  The Expanded Very Large Array , 2009, Proceedings of the IEEE.

[16]  F. Özel,et al.  The relation between optical extinction and hydrogen column density in the Galaxy , 2009 .

[17]  J. Tomsick,et al.  Chandra Detection of XTE J1650–500 in Quiescence and the Minimum Luminosity of Black Hole X-Ray Binaries , 2008, 0806.3491.

[18]  E. Fomalont,et al.  The Fifth VLBA Calibrator Survey: VCS5 , 2006, astro-ph/0607524.

[19]  J. McClintock,et al.  X-Ray Properties of Black-Hole Binaries , 2006, astro-ph/0606352.

[20]  A. Merloni,et al.  A radio-emitting outflow in the quiescent state of A0620−00: implications for modelling low-luminosity black hole binaries , 2006, astro-ph/0605376.

[21]  P. Kaaret,et al.  Discovery of X-Ray Jets in the Microquasar H1743–322 , 2005, astro-ph/0505526.

[22]  E. Fomalont,et al.  The Third VLBA Calibrator Survey: VCS3 , 2004, astro-ph/0409698.

[23]  G. L. Wycoff,et al.  THE THIRD US NAVAL OBSERVATORY CCD ASTROGRAPH CATALOG (UCAC3) , 2004, 1003.2136.

[24]  V. Dhawan,et al.  Radio and X-ray observations during the outburst decay of the black hole candidate XTE J1908+094 , 2004, astro-ph/0403578.

[25]  E. Feigelson,et al.  Chandra ACIS Subpixel Event Repositioning: Further Refinements and Comparison between Backside- and Frontside-illuminated X-Ray CCDs , 2004, astro-ph/0401592.

[26]  P. Jonker,et al.  An ultra-relativistic outflow from a neutron star accreting gas from a companion , 2004, Nature.

[27]  Thomas J. Maccarone,et al.  Do X-ray binary spectral state transition luminosities vary? , 2003, astro-ph/0308036.

[28]  J. Tomsick,et al.  Detection of Low-Hard State Spectral and Timing Signatures from the Black Hole X-Ray Transient XTE J1650–500 at Low X-Ray Luminosities , 2003, astro-ph/0307458.

[29]  A universal radio-X-ray correlation in low/hard state black hole binaries , 2003, astro-ph/0305231.

[30]  A. Tzioumis,et al.  Radio/X-ray correlation in the low/hard state of GX 339-4 , 2003, astro-ph/0301436.

[31]  J. Orosz,et al.  X-Ray Jet Emission from the Black Hole X-Ray Binary XTE J1550–564 with Chandra in 2000 , 2002, astro-ph/0210399.

[32]  P. Kaaret,et al.  X-Ray Emission from the Jets of XTE J1550–564 , 2002, astro-ph/0210401.

[33]  P. Kaaret,et al.  Large-Scale, Decelerating, Relativistic X-ray Jets from the Microquasar XTE J1550-564 , 2002, Science.

[34]  Scorpius X-1: The Evolution and Nature of the Twin Compact Radio Lobes , 2001, astro-ph/0104372.

[35]  Athol J Kemball,et al.  The Subparsec-Scale Structure and Evolution of Centaurus A: The Nearest Active Radio Galaxy , 1998 .

[36]  T. Shahbaz,et al.  On the outburst amplitude of the soft X-ray transients , 1997, astro-ph/9710105.

[37]  Robert A. Shaw,et al.  Astronomical data analysis software and systems IV : meeting held at Baltimore, Maryland, 25-28 September 1994 , 1995 .

[38]  J. van Paradijs,et al.  Optical and ultraviolet observations of X-ray binaries. , 1995 .

[39]  Chris Biemesderfer,et al.  Astronomical Data Analysis Software and Systems X , 2001 .

[40]  J. Dickey,et al.  H I in the Galaxy , 1990 .

[41]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[42]  J. Greenberg,et al.  Is there dust in galactic haloes? , 1987, Nature.

[43]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[44]  Keith Horne,et al.  Images of accretion discs – I. The eclipse mapping method , 1985 .

[45]  W. Cash,et al.  Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques , 1979 .