Dynamics of the free time-dependent effective mass

[1]  Bruno G. da Costa,et al.  Supersymmetric quantum mechanics and coherent states for a deformed oscillator with position-dependent effective mass , 2021, Journal of Mathematical Physics.

[2]  P. Patra,et al.  Squeezed coherent states for gravitational well in noncommutative space , 2020, Indian Journal of Physics.

[3]  S. Gangopadhyay,et al.  Investigation of a harmonic oscillator in a magnetic field with damping and time dependent noncommutativity , 2021, Physica Scripta.

[4]  Hong Li,et al.  Lewis-Riesenfeld Invariants in Two-level Quantum System Without the Rotating-Wave Approximation , 2020, International Journal of Theoretical Physics.

[5]  S. Ghosh,et al.  Entanglement induced by noncommutativity: anisotropic harmonic oscillator in noncommutative space , 2020, 2006.16528.

[6]  P. Patra,et al.  Squeezed coherent state for free-falling Maxwell–Chern–Simons model in long-wavelength limit , 2020 .

[7]  C. Fabre,et al.  Modes and states in quantum optics , 2019, Reviews of Modern Physics.

[8]  P. Patra,et al.  On the position-dependent effective mass Hamiltonian , 2019, 1910.09287.

[9]  Ignacio S. Gomez,et al.  Information-theoretic measures for a position-dependent mass system in an infinite potential well , 2019, Physica A: Statistical Mechanics and its Applications.

[10]  K. Guo,et al.  Influence of position-dependent effective mass on the nonlinear optical properties in Al Ga1−As/GaAs single and double triangular quantum wells , 2020 .

[11]  Sirin A. Büyükasik,et al.  Time-evolution of squeezed coherent states of a generalized quantum parametric oscillator , 2019, Journal of Mathematical Physics.

[12]  H. Belich,et al.  A Central Potential with a Massive Scalar Field in a Lorentz Symmetry Violation Environment , 2019, Advances in High Energy Physics.

[13]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[14]  M. Hosseini,et al.  Investigation of robust population transfer using quadratically chirped laser interacting with a two-level system , 2019, Physica Scripta.

[15]  I. Adama,et al.  Approximate solutions of the Dirac equation with Coulomb-Hulthén-like tensor interaction , 2018, Results in Physics.

[16]  C. C. Barros,et al.  Relativistic quantum motion of spin-0 particles under the influence of noninertial effects in the cosmic string spacetime , 2017, 1801.01024.

[17]  S. Menouar,et al.  Quantum features of molecular interactions associated with time-dependent non-central potentials , 2017 .

[18]  K. Bakke,et al.  Coulomb-type interaction under Lorentz symmetry breaking effects , 2017, 1708.09024.

[19]  W. Chung,et al.  Scattering of position-dependent mass Schrödinger equation with delta potential , 2017 .

[20]  K. Dahmen,et al.  Universal slip dynamics in metallic glasses and granular matter – linking frictional weakening with inertial effects , 2017, Scientific Reports.

[21]  M. K. Tavassoly,et al.  Dynamics of Nonclassicality of Time- and Conductivity-Dependent Squeezed States and Excited Even/Odd Coherent States , 2017 .

[22]  K. Guo,et al.  Effect of position-dependent effective mass on nonlinear optical properties in a quantum well , 2017 .

[23]  Meng-Yun Lai,et al.  The generalized harmonic potential theorem in the presence of a time-varying magnetic field , 2016, Scientific Reports.

[24]  M. Maamache,et al.  Analyzing generalized coherent states for a free particle , 2016, Scientific Reports.

[25]  M. S. Cunha,et al.  Relativistic Landau levels in the rotating cosmic string spacetime , 2016, 1606.04481.

[26]  F. A. Serrano,et al.  Information-theoretic measures for a solitonic profile mass Schrödinger equation with a squared hyperbolic cosecant potential , 2016 .

[27]  F. A. Serrano,et al.  Fisher information for the position-dependent mass Schrödinger system , 2015, 1509.08900.

[28]  L. C. Fai,et al.  Wave packet dynamics for a system with position and time-dependent effective mass in an infinite square well , 2015 .

[29]  D. Ferry Phase-space functions: can they give a different view of quantum mechanics? , 2015 .

[30]  D. Shihai,et al.  Shannon information entropies for position-dependent mass Schrödinger problem with a hyperbolic well , 2015 .

[31]  K. Bakke,et al.  On a relativistic scalar particle subject to a Coulomb-type potential given by Lorentz symmetry breaking effects , 2015, 1506.00562.

[32]  K. Bakke,et al.  On the Klein-Gordon oscillator subject to a Coulomb-type potential , 2014, 1411.6988.

[33]  J. Draayer,et al.  Quantum information entropies for position-dependent mass Schrödinger problem , 2014 .

[34]  F. Benamira,et al.  Class of invariants for a time dependent linear potential , 2013 .

[35]  Nader Engheta,et al.  Transformation Electronics: Tailoring the Effective Mass of Electrons , 2012 .

[36]  S. Mazharimousavi Revisiting the displacement operator for quantum systems with position-dependent mass , 2012, 1203.2799.

[37]  J. Klauder,et al.  Coherent states for continuous spectrum operators with non-normalizable fiducial states , 2011, 1111.6913.

[38]  D. Carney,et al.  The inflationary wavefunction and its initial conditions , 2011, 1109.6566.

[39]  G. A. Farias,et al.  Displacement operator for quantum systems with position-dependent mass , 2011, 1110.1582.

[40]  G. Fiore,et al.  Class of invariants for the 2D time-dependent Landau problem and harmonic oscillator in a magnetic field , 2011, 1103.4314.

[41]  E. Torrontegui,et al.  Lewis-Riesenfeld invariants and transitionless quantum driving , 2011, 1102.3449.

[42]  A. Sanpera,et al.  Atomic wave packet dynamics in finite time-dependent optical lattices , 2010, 1012.4967.

[43]  V. Aldaya,et al.  Harmonic states for the free particle , 2010, 1010.5525.

[44]  N. Mukunda,et al.  Wigner distributions in quantum mechanics , 2007 .

[45]  A. Schmidt Wave-packet revival for the Schrödinger equation with position-dependent mass , 2006 .

[46]  E. R. B. Mello,et al.  Exact solutions of the Klein–Gordon equation in the presence of a dyon, magnetic flux and scalar potential in the spacetime of gravitational defects , 2006, hep-th/0603036.

[47]  A. S. Dutra Ordering ambiguity versus representation , 2006, 0705.3247.

[48]  A. Schulze-Halberg Quantum systems with effective and time-dependent masses: form-preserving transformations and reality conditions , 2005 .

[49]  Francesca Colaiori,et al.  Signature of effective mass in crackling-noise asymmetry , 2005, cond-mat/0507607.

[50]  C. Quesne,et al.  Deformed algebras, position-dependent effective masses and curved spaces: an exactly solvable Coulomb problem , 2004, math-ph/0403047.

[51]  J. Choi,et al.  Exact quantum theory of noninteracting electrons with time-dependent effective mass in a time-dependent magnetic field , 2003 .

[52]  E. Álvarez,et al.  Quantum Gravity , 2004, gr-qc/0405107.

[53]  Q. Lin Anisotropic harmonic oscillator in a static electromagnetic field , 2002, quant-ph/0212038.

[54]  D. Trifonov Diagonalization of Hamiltonians, Uncertainty Matrices and Robertson Inequality , 2000, quant-ph/0012044.

[55]  A. S. Dutra,et al.  Exact solvability of potentials with spatially dependent effective masses , 2000, quant-ph/0306065.

[56]  M. Pi,et al.  STRUCTURE AND ENERGETICS OF MIXED 4HE-3HE DROPS , 1997 .

[57]  V. Penna Compact versus Noncompact Quantum Dynamics of Time-Dependentsu(1, 1)-Valued Hamiltonians , 1996 .

[58]  A. Polls,et al.  Effective mass of one 4He atom in liquid 3He. , 1994, Physical review. B, Condensed matter.

[59]  A. Brézini,et al.  Effective Mass Theory for Abrupt Heterostructures , 1993 .

[60]  Sudarshan,et al.  Gaussian-Wigner distributions in quantum mechanics and optics. , 1987, Physical review. A, General physics.

[61]  Morrow Establishment of an effective-mass Hamiltonian for abrupt heterojunctions. , 1987, Physical review. B, Condensed matter.

[62]  Mohamed A. Osman,et al.  Investigation of ballistic transport through resonant-tunnelling quantum wells using wigner function approach , 1985 .

[63]  B. Remaud,et al.  Damping of wave packet motion in a general time-dependent quadratic field , 1980 .

[64]  H. R. Lewis,et al.  An Exact Quantum Theory of the Time‐Dependent Harmonic Oscillator and of a Charged Particle in a Time‐Dependent Electromagnetic Field , 1969 .