Description of the REMIND Model (Version 1.6)

This document describes the REMIND model in its version 1.6. REMIND is an integrated assessment model of the energy-economy-climate system. REMIND stands for “Regional Model of Investments and Development.”

[1]  André Faaij,et al.  Outlook for advanced biofuels , 2006 .

[2]  Michel G.J. den Elzen,et al.  Long-term reduction potential of non-CO2 greenhouse gases , 2007 .

[3]  Wolfgang Lutz,et al.  The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100 , 2017, Global environmental change : human and policy dimensions.

[4]  Edward S. Rubin,et al.  Cost and performance of fossil fuel power plants with CO2 capture and storage , 2007 .

[5]  Danièle Revel,et al.  IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation , 2011 .

[6]  Thomas Bruckner,et al.  The Role of Concentrating Solar Power and Photovoltaics for Climate Protection , 2009 .

[7]  Tetsuo Fuchino,et al.  Thermo-economic analysis for the optimal conceptual design of biomass gasification energy conversion systems , 2009 .

[8]  Jens Borken-Kleefeld,et al.  Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications , 2011, Environ. Model. Softw..

[9]  Manfred Fischedick,et al.  Ökologisch optimierter Ausbau der Nutzung erneuerbarer Energien in Deutschland , 2004 .

[10]  Noureddine Krichene,et al.  An oil demand and supply model incorporating monetary policy , 2010 .

[11]  根岸 隆,et al.  General equilibrium theory and international trade , 1972 .

[12]  T. Wigley,et al.  Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 - Part 1: Model description and calibration , 2011 .

[13]  Robert C. Pietzcker,et al.  Using the sun to decarbonize the power sector : the economic potential of photovoltaics and concentrating solar power , 2014 .

[14]  Tom M. L. Wigley,et al.  Emulating atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 – Part 2: Applications , 2011 .

[15]  Waichi Iwasaki,et al.  A consideration of the economic efficiency of hydrogen production from biomass , 2003 .

[16]  Jens Borken-Kleefeld,et al.  Global anthropogenic emissions of particulate matter including black carbon , 2016 .

[17]  F. Trieb,et al.  Global Potential of Concentrating Solar Power , 2009 .

[18]  H. Lotze-Campen,et al.  Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production , 2010 .

[19]  Martin Junginger,et al.  Technological Learning in the Energy Sector , 2008 .

[20]  Wolfgang Lucht,et al.  Scenarios of global bioenergy production: The trade-offs between agricultural expansion, intensification and trade , 2010 .

[21]  S. Polasky,et al.  Land Clearing and the Biofuel Carbon Debt , 2008, Science.

[22]  Robert J. Brecha,et al.  Assessing global fossil fuel availability in a scenario framework , 2016 .

[23]  Gunnar Luderer,et al.  The role of technological availability for the distributive impacts of climate change mitigation policy , 2011 .

[24]  G. Luderer,et al.  Global fossil energy markets and climate change mitigation – an analysis with REMIND , 2012, Climatic Change.

[25]  M. Hoogwijk On the global and regional potential of renewable energy sources , 2004 .

[26]  Jan Christoph Steckel,et al.  The economics of decarbonizing the energy system—results and insights from the RECIPE model intercomparison , 2012, Climatic Change.

[27]  C. Dahl,et al.  Survey of price elasticities from economic exploration models of US oil and gas supply , 1998 .

[28]  Noureddine Krichene,et al.  World crude oil and natural gas: a demand and supply model , 2002 .

[29]  Jan Christoph Steckel,et al.  Time to act now? Assessing the costs of delaying climate measures and benefits of early action , 2012, Climatic Change.

[30]  Xi Lu,et al.  Chapter 4 – Global Potential for Wind-Generated Electricity , 2017 .

[31]  C. Müller,et al.  Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm , 2017 .

[32]  Thorsten Frank Schulz Intermediate steps towards the 2000-Watt society in Switzerland , 2007 .

[33]  Sha Fu,et al.  Long-Term Transport Energy Demand and Climate Policy: Alternative Visions on Transport Decarbonization in Energy Economy Models , 2013 .

[34]  O. Edenhofer,et al.  Mitigation Costs in a Globalized World: Climate Policy Analysis with REMIND-R , 2010 .

[35]  G. Giebel,et al.  Europe's onshore and offshore wind energy potential : An assessment of environmental and economic constraints , 2009 .

[36]  Benjamin Leon Bodirsky,et al.  The global economic long-term potential of modern biomass in a climate-constrained world , 2014, Environmental Research Letters.

[37]  Socrates Kypreos,et al.  Linking energy system and macroeconomic growth models , 2008, Comput. Manag. Sci..

[38]  H. Grassl,et al.  Welt im Wandel - Energiewende zur Nachhaltigkeit , 2003 .

[39]  R Vance,et al.  Uranium 2005: Resources, Production and Demand , 2006 .

[40]  Michael Taylor,et al.  An overview of second generation biofuel technologies. , 2010, Bioresource technology.

[41]  A. S. Manne,et al.  International Trade in Oil, Gas and Carbon Emission Rights: An Intertemporal General Equilibrium Model* , 1994 .

[42]  Kenji Yamaji,et al.  Important roles of Fischer–Tropsch synfuels in the global energy future , 2008 .

[43]  Leonardo Barreto,et al.  Biomass-fired cogeneration systems with CO2 capture and storage , 2007 .

[44]  Aie Energy Balances of non-OECD Countries 2010 , 2010 .

[45]  John P. Weyant,et al.  A special issue on the RCPs , 2011 .

[46]  Gunnar Luderer,et al.  The Role of Time Preferences in Explaining the Long-Term Pattern of International Trade , 2015 .

[47]  Jessica Strefler,et al.  Description of the REMIND Model (Version 1.5) , 2013 .

[48]  Kenichi Wada,et al.  The role of renewable energy in climate stabilization: results from the EMF27 scenarios , 2014, Climatic Change.

[49]  H. Rogner AN ASSESSMENT OF WORLD HYDROCARBON RESOURCES , 1997 .

[50]  Monique Hoogwijk,et al.  Energy Resources and Potentials , 2012 .

[51]  Alan S. Manne,et al.  MERGE. A model for evaluating regional and global effects of GHG reduction policies , 1995 .

[52]  N. Bauer,et al.  The REMIND-R model: the role of renewables in the low-carbon transformation—first-best vs. second-best worlds , 2012, Climatic Change.

[53]  Keywan Riahi,et al.  A new scenario framework for climate change research: the concept of shared socioeconomic pathways , 2013, Climatic Change.

[54]  Global Energy Assessment Writing Team Global Energy Assessment: Toward a Sustainable Future , 2012 .

[55]  William D. Nordhaus,et al.  Warming the World: Economic Models of Global Warming , 2000 .

[56]  David A. Kendrick,et al.  GAMS : a user's guide, Release 2.25 , 1992 .

[57]  Jacinto F. Fabiosa,et al.  Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change , 2008, Science.

[58]  T. Beringer,et al.  The global technical potential of bio-energy in 2050 considering sustainability constraints , 2010, Current opinion in environmental sustainability.

[59]  Roderick G. Eggert,et al.  Depletion and the future availability of petroleum resources , 2009 .

[60]  Poul Erik Morthorst,et al.  Experience curves: A tool for energy policy assessment , 2003 .

[61]  Ottmar Edenhofer,et al.  Technological Change and International Trade -Insights from REMIND-R , 2010 .

[62]  G. Luderer,et al.  Economic impacts of alternative greenhouse gas emission metrics: a model-based assessment , 2014, Climatic Change.

[63]  C. Müller,et al.  Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach. , 2008 .

[64]  Socrates Kypreos,et al.  Intermediate steps towards the 2000 W society in Switzerland: An energy–economic scenario analysis , 2008 .

[65]  Edward S. Rubin,et al.  CO2 control technology effects on IGCC plant performance and cost , 2009 .

[66]  Arne Stolbjerg Drud,et al.  CONOPT - A Large-Scale GRG Code , 1994, INFORMS J. Comput..

[67]  Emmanuel Kakaras,et al.  Air-blown biomass gasification combined cycles (BGCC): System analysis and economic assessment , 2009 .

[68]  Socrates Kypreos,et al.  The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs , 2010 .

[69]  B. Ohlin,et al.  Heckscher-Ohlin Trade Theory , 1991 .

[70]  T. Bruckner,et al.  Aggregated Carbon cycle, atmospheric chemistry and climate model (ACC2): description of forward and inverse mode , 2007 .

[71]  Keywan Riahi,et al.  Impacts of considering electric sector variability and reliability in the MESSAGE model , 2013 .

[72]  Robert J. Brecha,et al.  Economics of nuclear power and climate change mitigation policies , 2012, Proceedings of the National Academy of Sciences.

[73]  William D. Nordhaus,et al.  A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies , 1996 .

[74]  Elmar Kriegler,et al.  Asia's role in mitigating climate change: A technology and sector specific analysis with ReMIND-R , 2012 .

[75]  F. Piontek,et al.  Long-term climate policy implications of phasing out fossil fuel subsidies , 2014 .