Exact and heuristic algorithms for the interval data robust assignment problem

We consider the Assignment Problem with interval data, where it is assumed that only upper and lower bounds are known for each cost coefficient. It is required to find a minmax regret assignment. The problem is known to be strongly NP-hard. We present and compare computationally several exact and heuristic methods, including Benders decomposition, using CPLEX, a variable depth neighborhood local search, and two hybrid population-based heuristics. We report results of extensive computational experiments.

[1]  Igor Averbakh,et al.  The Robust Set Covering Problem with interval data , 2011, Annals of Operations Research.

[2]  J. Beasley,et al.  A genetic algorithm for the set covering problem , 1996 .

[3]  J. F. Benders Partitioning procedures for solving mixed-variables programming problems , 1962 .

[4]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .

[5]  Roberto Montemanni,et al.  The robust shortest path problem with interval data via Benders decomposition , 2005, 4OR.

[6]  Daniel Vanderpooten,et al.  Min-max and min-max regret versions of combinatorial optimization problems: A survey , 2009, Eur. J. Oper. Res..

[7]  George L. Nemhauser,et al.  Handbook Of Discrete Optimization , 2005 .

[8]  D. Vanderpooten,et al.  Complexity of the min-max (regret) versions of min cut problems , 2008, Discret. Optim..

[9]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[10]  Robert E. Bixby,et al.  Mixed-Integer Programming: A Progress Report , 2004, The Sharpest Cut.

[11]  János Barta,et al.  The Robust Traveling Salesman Problem with Interval Data , 2006, Transp. Sci..

[12]  Paolo Toth,et al.  Algorithms and codes for the assignment problem , 1988 .

[13]  A. Schrijver On the History of Combinatorial Optimization (Till 1960) , 2005 .

[14]  Daniel Vanderpooten,et al.  Complexity of the min-max and min-max regret assignment problems , 2005, Oper. Res. Lett..

[15]  Mauro Dell'Amico,et al.  Assignment Problems , 1998, IFIP Congress: Fundamentals - Foundations of Computer Science.

[16]  John E. Beasley,et al.  Linear Programming on Cray Supercomputers , 1990 .

[17]  Igor Averbakh,et al.  On the complexity of a class of combinatorial optimization problems with uncertainty , 2001, Math. Program..

[18]  A. M. Geoffrion Generalized Benders decomposition , 1972 .

[19]  Adam Kasperski,et al.  Discrete Optimization with Interval Data - Minmax Regret and Fuzzy Approach , 2008, Studies in Fuzziness and Soft Computing.

[20]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[21]  A. Volgenant,et al.  A shortest augmenting path algorithm for dense and sparse linear assignment problems , 1987, Computing.

[22]  Roberto Montemanni,et al.  A Benders decomposition approach for the robust spanning tree problem with interval data , 2006, Eur. J. Oper. Res..

[23]  Fred W. Glover,et al.  Ejection chain and filter-and-fan methods in combinatorial optimization , 2006, 4OR.

[24]  Igor Averbakh,et al.  Interval data minmax regret network optimization problems , 2004, Discret. Appl. Math..