New methods for creating superoscillations

Superoscillating functions, i.e., functions that locally oscillate at a rate faster than their highest Fourier component, are of interest for applications from fundamental physics to engineering. Here, we develop a new method which allows one to construct superoscillations of arbitrarily high frequency and arbitrarily long duration in a computationally efficient way. We also present a method for constructing non-singular Schrodinger potentials whose ground state is a superoscillating wave function.

[1]  D. Struppa,et al.  On the Cauchy problem for the Schrödinger equation with superoscillatory initial data , 2013 .

[2]  Moshe Schwartz,et al.  Yield-Optimized Superoscillations , 2012, IEEE Transactions on Signal Processing.

[3]  Eugene Tang,et al.  Scaling properties of superoscillations and the extension to periodic signals , 2015, Journal of Physics A: Mathematical and Theoretical.

[4]  D. Psaltis,et al.  Superoscillatory diffraction-free beams , 2011 .

[5]  Jari Lindberg,et al.  Mathematical concepts of optical superresolution , 2012 .

[6]  M. .. Moore Statistical Mechanics: A Set of Lectures , 1974 .

[7]  Michael Beny,et al.  Faster than Fourier , 2017 .

[8]  Dae Gwan Lee,et al.  Superoscillations With Optimum Energy Concentration , 2014, IEEE Transactions on Signal Processing.

[9]  J. B. Díaz,et al.  Sturm comparison theorems for ordinary and partial differential equations , 1969 .

[10]  Achim Kempf,et al.  Driving quantum systems with superoscillations , 2015, Journal of Mathematical Physics.

[11]  Dae Gwan Lee,et al.  Superoscillations with Optimal Numerical Stability , 2014, IEEE Signal Processing Letters.

[12]  Vaidman,et al.  How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. , 1988, Physical review letters.

[13]  D. Struppa,et al.  Evolution of superoscillatory data , 2014 .

[14]  Achim Kempf,et al.  Unusual properties of superoscillating particles , 2004 .

[15]  Mark R. Dennis,et al.  Superoscillation in speckle patterns. , 2008, Optics letters.

[16]  D. Struppa,et al.  Quantum harmonic oscillator with superoscillating initial datum , 2014, 1411.4112.

[17]  J. Anandan,et al.  Quantum Coherenece and Reality, In Celebration of the 60th Birthday of Yakir Aharonov , 1995 .

[18]  Nikolay I Zheludev,et al.  What diffraction limit? , 2008, Nature materials.

[19]  D. Struppa,et al.  On Superoscillations Longevity: A Windowed Fourier Transform Approach , 2014 .

[20]  S. Barnett,et al.  Superweak momentum transfer near optical vortices , 2013 .

[21]  G. V. Eleftheriades,et al.  Temporal Pulse Compression Beyond the Fourier Transform Limit , 2011, IEEE Transactions on Microwave Theory and Techniques.

[22]  Dae Gwan Lee,et al.  Direct Construction of Superoscillations , 2014, IEEE Transactions on Signal Processing.