Error Estimates for Multivariate Regression on Discretized Function Spaces
暂无分享,去创建一个
[1] Michael Griebel,et al. On the construction of sparse tensor product spaces , 2012, Math. Comput..
[2] Michael Griebel,et al. Multiscale Approximation and Reproducing Kernel Hilbert Space Methods , 2015, SIAM J. Numer. Anal..
[3] Albert Cohen,et al. On the Stability and Accuracy of Least Squares Approximations , 2011, Foundations of Computational Mathematics.
[4] A. K. Pujari,et al. Data Mining Techniques , 2006 .
[5] V. Temlyakov. Approximation in Learning Theory , 2008 .
[6] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[7] S. Mahadevan,et al. Learning Theory , 2001 .
[8] R. DeVore,et al. Universal Algorithms for Learning Theory. Part II: Piecewise Polynomial Functions , 2007 .
[9] Adam Krzyzak,et al. A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.
[10] Yiming Ying,et al. Learnability of Gaussians with Flexible Variances , 2007, J. Mach. Learn. Res..
[11] Markus Hegland,et al. A Finite Element Method for Density Estimation with Gaussian Process Priors , 2010, SIAM J. Numer. Anal..
[12] Christian Feuersänger,et al. Sparse grid methods for higher dimensional approximation , 2010 .
[13] M. Kohler. Inequalities for uniform deviations of averages from expectations with applications to nonparametric regression , 2000 .
[14] Markus Hegland,et al. An optimal order regularization method which does not use additional smoothness assumptions , 1992 .
[15] S. Smale,et al. ESTIMATING THE APPROXIMATION ERROR IN LEARNING THEORY , 2003 .
[16] Michael Griebel,et al. Sparse grids for boundary integral equations , 1999, Numerische Mathematik.
[17] Fabio Nobile,et al. Analysis of Discrete $$L^2$$L2 Projection on Polynomial Spaces with Random Evaluations , 2014, Found. Comput. Math..
[18] V. N. Temli︠a︡kov. Approximation of periodic functions , 1993 .
[19] Julien Mairal,et al. Optimization with Sparsity-Inducing Penalties , 2011, Found. Trends Mach. Learn..
[20] M. Narasimha Murty,et al. Data Mining Techniques , 2014 .
[21] Zongben Xu,et al. Estimation of learning rate of least square algorithm via Jackson operator , 2011, Neurocomputing.
[22] Vladimir Temlyakov,et al. The Entropy in Learning Theory. Error Estimates , 2007 .
[23] George G. Lorentz,et al. Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.
[24] Markus Hegland,et al. Maximum a posteriori density estimation and the sparse grid combination technique , 2013 .
[25] Michael Griebel,et al. An Adaptive Sparse Grid Approach for Time Series Prediction , 2012 .
[26] Albert Cohen,et al. Discrete least squares polynomial approximation with random evaluations − application to parametric and stochastic elliptic PDEs , 2015 .
[27] T. Hastie,et al. Principal Curves , 2007 .
[28] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[29] Michael Griebel,et al. Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems , 1995, Adv. Comput. Math..
[30] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[31] Charles A. Micchelli,et al. On Learning Vector-Valued Functions , 2005, Neural Computation.
[32] Markus Hegland,et al. Fitting multidimensional data using gradient penalties and the sparse grid combination technique , 2009, Computing.
[33] Michel Verleysen,et al. Nonlinear Dimensionality Reduction , 2021, Computer Vision.
[34] Felipe Cucker,et al. On the mathematical foundations of learning , 2001 .
[35] Ding-Xuan Zhou,et al. Learning with sample dependent hypothesis spaces , 2008, Comput. Math. Appl..
[36] Wolfgang Dahmen,et al. Universal Algorithms for Learning Theory Part I : Piecewise Constant Functions , 2005, J. Mach. Learn. Res..
[37] T. Poggio,et al. General conditions for predictivity in learning theory , 2004, Nature.
[38] Anthony Widjaja,et al. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.
[39] Benjamin Peherstorfer,et al. Spatially adaptive sparse grids for high-dimensional data-driven problems , 2010, J. Complex..