Pseudopowers and primality proving
暂无分享,去创建一个
Pedro Berrizbeitia | Hugh C. Williams | Siguna Müller | P. Berrizbeitia | Siguna Müller | H. Williams
[1] Hugh C. Williams,et al. Doubly-Focused Enumeration of Pseudosquares and Pseudocubes , 2006, ANTS.
[2] Kenneth S. Williams,et al. Merten's theorem for arithmetic progressions , 1974 .
[3] Hugh C. Williams,et al. Some results on pseudosquares , 1996, Math. Comput..
[4] H. Lenstra,et al. Primalitv Testing and Jacobi Sums , 2010 .
[5] D. H. Lehmer. On the Converse of Fermat's Theorem , 1936 .
[6] Volker Strassen,et al. A Fast Monte-Carlo Test for Primality , 1977, SIAM J. Comput..
[7] D. J. Bernstein. Doubly focused enumeration of locally square polynomial values , 2004 .
[8] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[9] Michael Rosen,et al. A classical introduction to modern number theory , 1982, Graduate texts in mathematics.
[10] Hendrik W. Lenstra,et al. Primality testing algorithms [after Adleman, Rumely and Williams] , 1981 .
[11] D. Bernstein. DISTINGUISHING PRIME NUMBERS FROM COMPOSITE NUMBERS , 2022 .
[12] Donald E. Knuth,et al. The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .
[13] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[14] Pedro Berrizbeitia,et al. Pseudocubes and Primality Testing , 2004, ANTS.
[15] M. Rabin. Probabilistic algorithm for testing primality , 1980 .
[16] H. Lenstra,et al. Primality testing algorithms , 1981 .
[17] Gary L. Miller,et al. Riemann's Hypothesis and tests for primality , 1975, STOC.
[18] Gary L. Miller. Riemann's Hypothesis and Tests for Primality , 1976, J. Comput. Syst. Sci..
[19] Donald E. Knuth. The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .